Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexchb1 Structured version   Visualization version   GIF version

Theorem cvlexchb1 36498
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexchb1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))

Proof of Theorem cvlexchb1
StepHypRef Expression
1 cvllat 36494 . . . . . . . . 9 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
21adantr 483 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝐾 ∈ Lat)
3 simpr3 1192 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋𝐵)
4 simpr2 1191 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐴)
5 cvlexch.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
6 cvlexch.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
75, 6atbase 36457 . . . . . . . . 9 (𝑄𝐴𝑄𝐵)
84, 7syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑄𝐵)
9 cvlexch.l . . . . . . . . 9 = (le‘𝐾)
10 cvlexch.j . . . . . . . . 9 = (join‘𝐾)
115, 9, 10latlej1 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → 𝑋 (𝑋 𝑄))
122, 3, 8, 11syl3anc 1367 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑄))
13123adant3 1128 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑄))
1413adantr 483 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑄))
15 simpr 487 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑃 (𝑋 𝑄))
16 simpr1 1190 . . . . . . . . 9 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐴)
175, 6atbase 36457 . . . . . . . . 9 (𝑃𝐴𝑃𝐵)
1816, 17syl 17 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃𝐵)
195, 10latjcl 17644 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
202, 3, 8, 19syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑄) ∈ 𝐵)
215, 9, 10latjle12 17655 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
222, 3, 18, 20, 21syl13anc 1368 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
23223adant3 1128 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2423adantr 483 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑄) ∧ 𝑃 (𝑋 𝑄)) ↔ (𝑋 𝑃) (𝑋 𝑄)))
2514, 15, 24mpbi2and 710 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) (𝑋 𝑄))
265, 9, 10latlej1 17653 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑋 (𝑋 𝑃))
272, 3, 18, 26syl3anc 1367 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑋 (𝑋 𝑃))
28273adant3 1128 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋 (𝑋 𝑃))
2928adantr 483 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑋 (𝑋 𝑃))
305, 9, 10, 6cvlexch1 36496 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → 𝑄 (𝑋 𝑃)))
3130imp 409 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → 𝑄 (𝑋 𝑃))
325, 10latjcl 17644 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
332, 3, 18, 32syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (𝑋 𝑃) ∈ 𝐵)
345, 9, 10latjle12 17655 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵 ∧ (𝑋 𝑃) ∈ 𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
352, 3, 8, 33, 34syl13anc 1368 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
36353adant3 1128 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3736adantr 483 . . . . 5 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 (𝑋 𝑃) ∧ 𝑄 (𝑋 𝑃)) ↔ (𝑋 𝑄) (𝑋 𝑃)))
3829, 31, 37mpbi2and 710 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 𝑃))
395, 9latasymb 17647 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑃) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
402, 33, 20, 39syl3anc 1367 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
41403adant3 1128 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4241adantr 483 . . . 4 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 𝑃) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 𝑃)) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
4325, 38, 42mpbi2and 710 . . 3 (((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑃) = (𝑋 𝑄))
4443ex 415 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) → (𝑋 𝑃) = (𝑋 𝑄)))
455, 9, 10latlej2 17654 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → 𝑃 (𝑋 𝑃))
462, 3, 18, 45syl3anc 1367 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → 𝑃 (𝑋 𝑃))
47 breq2 5056 . . . 4 ((𝑋 𝑃) = (𝑋 𝑄) → (𝑃 (𝑋 𝑃) ↔ 𝑃 (𝑋 𝑄)))
4846, 47syl5ibcom 247 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵)) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
49483adant3 1128 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑋 𝑃) = (𝑋 𝑄) → 𝑃 (𝑋 𝑄)))
5044, 49impbid 214 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5052  cfv 6341  (class class class)co 7142  Basecbs 16466  lecple 16555  joincjn 17537  Latclat 17638  Atomscatm 36431  CvLatclc 36433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-proset 17521  df-poset 17539  df-lub 17567  df-glb 17568  df-join 17569  df-meet 17570  df-lat 17639  df-ats 36435  df-atl 36466  df-cvlat 36490
This theorem is referenced by:  cvlexchb2  36499  cvlexch4N  36501  cvlatexchb1  36502  cvlcvr1  36507  hlexchb1  36552
  Copyright terms: Public domain W3C validator