Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlcvr1 Structured version   Visualization version   GIF version

Theorem cvlcvr1 34103
Description: The covering property. Proposition 1(ii) in [Kalmbach] p. 140 (and its converse). (chcv1 29060 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlcvr1.b 𝐵 = (Base‘𝐾)
cvlcvr1.l = (le‘𝐾)
cvlcvr1.j = (join‘𝐾)
cvlcvr1.c 𝐶 = ( ⋖ ‘𝐾)
cvlcvr1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlcvr1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvlcvr1
Dummy variables 𝑧 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp13 1091 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ CvLat)
2 cvllat 34090 . . . . . . 7 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
31, 2syl 17 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
4 simp2 1060 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
5 cvlcvr1.b . . . . . . . 8 𝐵 = (Base‘𝐾)
6 cvlcvr1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
75, 6atbase 34053 . . . . . . 7 (𝑃𝐴𝑃𝐵)
873ad2ant3 1082 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
9 cvlcvr1.l . . . . . . 7 = (le‘𝐾)
10 eqid 2621 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
11 cvlcvr1.j . . . . . . 7 = (join‘𝐾)
125, 9, 10, 11latnle 17006 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
133, 4, 8, 12syl3anc 1323 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
1413biimpd 219 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋(lt‘𝐾)(𝑋 𝑃)))
15 simpl13 1136 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CvLat)
1615, 2syl 17 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ Lat)
17 simprll 801 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧𝐵)
18 simpl2 1063 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋𝐵)
19 simpl3 1064 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐴)
2019, 7syl 17 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑃𝐵)
215, 11latjcl 16972 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
2216, 18, 20, 21syl3anc 1323 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) ∈ 𝐵)
23 simprrr 804 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 (𝑋 𝑃))
24 simprrl 803 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋(lt‘𝐾)𝑧)
25 simpl11 1134 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ OML)
26 simpl12 1135 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ CLat)
27 cvlatl 34089 . . . . . . . . . . . 12 (𝐾 ∈ CvLat → 𝐾 ∈ AtLat)
2815, 27syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝐾 ∈ AtLat)
295, 9, 10, 6atlrelat1 34085 . . . . . . . . . . 11 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3025, 26, 28, 18, 17, 29syl311anc 1337 . . . . . . . . . 10 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧 → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧)))
3124, 30mpd 15 . . . . . . . . 9 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ∃𝑞𝐴𝑞 𝑋𝑞 𝑧))
3216adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ Lat)
335, 6atbase 34053 . . . . . . . . . . . . . 14 (𝑞𝐴𝑞𝐵)
3433ad2antrl 763 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐵)
3517adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧𝐵)
3622adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) ∈ 𝐵)
37 simprrr 804 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 𝑧)
3823adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑧 (𝑋 𝑃))
395, 9, 32, 34, 35, 36, 37, 38lattrd 16979 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞 (𝑋 𝑃))
4015adantr 481 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝐾 ∈ CvLat)
41 simprl 793 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑞𝐴)
42 simpll3 1100 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃𝐴)
43 simpll2 1099 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋𝐵)
44 simprrl 803 . . . . . . . . . . . . 13 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑞 𝑋)
455, 9, 11, 6cvlexch1 34092 . . . . . . . . . . . . 13 ((𝐾 ∈ CvLat ∧ (𝑞𝐴𝑃𝐴𝑋𝐵) ∧ ¬ 𝑞 𝑋) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4640, 41, 42, 43, 44, 45syl131anc 1336 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑞 (𝑋 𝑃) → 𝑃 (𝑋 𝑞)))
4739, 46mpd 15 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑃 (𝑋 𝑞))
48 simprlr 802 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → ¬ 𝑃 𝑋)
4948adantr 481 . . . . . . . . . . . 12 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ¬ 𝑃 𝑋)
505, 9, 11, 6cvlexchb1 34094 . . . . . . . . . . . 12 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑞𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5140, 42, 41, 43, 49, 50syl131anc 1336 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑃 (𝑋 𝑞) ↔ (𝑋 𝑃) = (𝑋 𝑞)))
5247, 51mpbid 222 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) = (𝑋 𝑞))
539, 10pltle 16882 . . . . . . . . . . . . . 14 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑧𝐵) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5425, 18, 17, 53syl3anc 1323 . . . . . . . . . . . . 13 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋(lt‘𝐾)𝑧𝑋 𝑧))
5524, 54mpd 15 . . . . . . . . . . . 12 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑋 𝑧)
5655adantr 481 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → 𝑋 𝑧)
575, 9, 11latjle12 16983 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑞𝐵𝑧𝐵)) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5832, 43, 34, 35, 57syl13anc 1325 . . . . . . . . . . 11 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → ((𝑋 𝑧𝑞 𝑧) ↔ (𝑋 𝑞) 𝑧))
5956, 37, 58mpbi2and 955 . . . . . . . . . 10 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑞) 𝑧)
6052, 59eqbrtrd 4635 . . . . . . . . 9 (((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) ∧ (𝑞𝐴 ∧ (¬ 𝑞 𝑋𝑞 𝑧))) → (𝑋 𝑃) 𝑧)
6131, 60rexlimddv 3028 . . . . . . . 8 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → (𝑋 𝑃) 𝑧)
625, 9, 16, 17, 22, 23, 61latasymd 16978 . . . . . . 7 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ ((𝑧𝐵 ∧ ¬ 𝑃 𝑋) ∧ (𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)))) → 𝑧 = (𝑋 𝑃))
6362exp44 640 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑧𝐵 → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
6463imp 445 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑧𝐵) → (¬ 𝑃 𝑋 → ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6564ralrimdva 2963 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃))))
6614, 65jcad 555 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋 → (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
673, 4, 8, 21syl3anc 1323 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃) ∈ 𝐵)
68 cvlcvr1.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
695, 9, 10, 68cvrval2 34038 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
703, 4, 67, 69syl3anc 1323 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) ↔ (𝑋(lt‘𝐾)(𝑋 𝑃) ∧ ∀𝑧𝐵 ((𝑋(lt‘𝐾)𝑧𝑧 (𝑋 𝑃)) → 𝑧 = (𝑋 𝑃)))))
7166, 70sylibrd 249 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
723adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝐾 ∈ Lat)
73 simpl2 1063 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐵)
7467adantr 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → (𝑋 𝑃) ∈ 𝐵)
75 simpr 477 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋𝐶(𝑋 𝑃))
765, 10, 68cvrlt 34034 . . . . 5 (((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7772, 73, 74, 75, 76syl31anc 1326 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶(𝑋 𝑃)) → 𝑋(lt‘𝐾)(𝑋 𝑃))
7877ex 450 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → 𝑋(lt‘𝐾)(𝑋 𝑃)))
7978, 13sylibrd 249 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶(𝑋 𝑃) → ¬ 𝑃 𝑋))
8071, 79impbid 202 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃 𝑋𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  ltcplt 16862  joincjn 16865  Latclat 16966  CLatccla 17028  OMLcoml 33939  ccvr 34026  Atomscatm 34027  AtLatcal 34028  CvLatclc 34029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-lat 16967  df-clat 17029  df-oposet 33940  df-ol 33942  df-oml 33943  df-covers 34030  df-ats 34031  df-atl 34062  df-cvlat 34086
This theorem is referenced by:  cvlcvrp  34104  cvr1  34173
  Copyright terms: Public domain W3C validator