Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg2 Structured version   Visualization version   GIF version

Theorem difelcarsg2 29508
Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg2 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem difelcarsg2
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 difelcarsg.1 . . . 4 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
41, 2, 3elcarsgss 29504 . . 3 (𝜑𝐴𝑂)
5 difin2 3848 . . 3 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
64, 5syl 17 . 2 (𝜑 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
7 inelcarsg.2 . . . 4 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
81, 2, 7difelcarsg 29505 . . 3 (𝜑 → (𝑂𝐵) ∈ (toCaraSiga‘𝑀))
9 inelcarsg.1 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
101, 2, 8, 9, 3inelcarsg 29506 . 2 (𝜑 → ((𝑂𝐵) ∩ 𝐴) ∈ (toCaraSiga‘𝑀))
116, 10eqeltrd 2687 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  cdif 3536  cun 3537  cin 3538  wss 3539  𝒫 cpw 4107   class class class wbr 4577  wf 5786  cfv 5790  (class class class)co 6527  0cc0 9792  +∞cpnf 9927  cle 9931   +𝑒 cxad 11776  [,]cicc 12005  toCaraSigaccarsg 29496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-xadd 11779  df-icc 12009  df-carsg 29497
This theorem is referenced by:  carsgclctunlem3  29515
  Copyright terms: Public domain W3C validator