![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > distgp | Structured version Visualization version GIF version |
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
distgp.1 | ⊢ 𝐵 = (Base‘𝐺) |
distgp.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
distgp | ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ Grp) | |
2 | simpr 476 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 = 𝒫 𝐵) | |
3 | distgp.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | fvex 6239 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
5 | 3, 4 | eqeltri 2726 | . . . . 5 ⊢ 𝐵 ∈ V |
6 | distopon 20849 | . . . . 5 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ (TopOn‘𝐵)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ 𝒫 𝐵 ∈ (TopOn‘𝐵) |
8 | 2, 7 | syl6eqel 2738 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐽 ∈ (TopOn‘𝐵)) |
9 | distgp.2 | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
10 | 3, 9 | istps 20786 | . . 3 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵)) |
11 | 8, 10 | sylibr 224 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopSp) |
12 | eqid 2651 | . . . . . 6 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
13 | 3, 12 | grpsubf 17541 | . . . . 5 ⊢ (𝐺 ∈ Grp → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
15 | 5, 5 | xpex 7004 | . . . . 5 ⊢ (𝐵 × 𝐵) ∈ V |
16 | 5, 15 | elmap 7928 | . . . 4 ⊢ ((-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵)) ↔ (-g‘𝐺):(𝐵 × 𝐵)⟶𝐵) |
17 | 14, 16 | sylibr 224 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
18 | 2, 2 | oveq12d 6708 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = (𝒫 𝐵 ×t 𝒫 𝐵)) |
19 | txdis 21483 | . . . . . . 7 ⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵)) | |
20 | 5, 5, 19 | mp2an 708 | . . . . . 6 ⊢ (𝒫 𝐵 ×t 𝒫 𝐵) = 𝒫 (𝐵 × 𝐵) |
21 | 18, 20 | syl6eq 2701 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝐽 ×t 𝐽) = 𝒫 (𝐵 × 𝐵)) |
22 | 21 | oveq1d 6705 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝒫 (𝐵 × 𝐵) Cn 𝐽)) |
23 | cndis 21143 | . . . . 5 ⊢ (((𝐵 × 𝐵) ∈ V ∧ 𝐽 ∈ (TopOn‘𝐵)) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) | |
24 | 15, 8, 23 | sylancr 696 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (𝒫 (𝐵 × 𝐵) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
25 | 22, 24 | eqtrd 2685 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → ((𝐽 ×t 𝐽) Cn 𝐽) = (𝐵 ↑𝑚 (𝐵 × 𝐵))) |
26 | 17, 25 | eleqtrrd 2733 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
27 | 9, 12 | istgp2 21942 | . 2 ⊢ (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
28 | 1, 11, 26, 27 | syl3anbrc 1265 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵) → 𝐺 ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 𝒫 cpw 4191 × cxp 5141 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Basecbs 15904 TopOpenctopn 16129 Grpcgrp 17469 -gcsg 17471 TopOnctopon 20763 TopSpctps 20784 Cn ccn 21076 ×t ctx 21411 TopGrpctgp 21922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-map 7901 df-0g 16149 df-topgen 16151 df-plusf 17288 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cn 21079 df-cnp 21080 df-tx 21413 df-tmd 21923 df-tgp 21924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |