MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istgp2 Structured version   Visualization version   GIF version

Theorem istgp2 22096
Description: A group with a topology is a topological group iff the subtraction operation is continuous. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tgpsubcn.2 𝐽 = (TopOpen‘𝐺)
tgpsubcn.3 = (-g𝐺)
Assertion
Ref Expression
istgp2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))

Proof of Theorem istgp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 22083 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 tgptps 22085 . . 3 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
3 tgpsubcn.2 . . . 4 𝐽 = (TopOpen‘𝐺)
4 tgpsubcn.3 . . . 4 = (-g𝐺)
53, 4tgpsubcn 22095 . . 3 (𝐺 ∈ TopGrp → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
61, 2, 53jca 1123 . 2 (𝐺 ∈ TopGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
7 simp1 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Grp)
8 grpmnd 17630 . . . . 5 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
983ad2ant1 1128 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ Mnd)
10 simp2 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopSp)
11 eqid 2760 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
12 eqid 2760 . . . . . . . 8 (+g𝐺) = (+g𝐺)
13 eqid 2760 . . . . . . . 8 (invg𝐺) = (invg𝐺)
1473ad2ant1 1128 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
15 simp2 1132 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1133 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
1711, 12, 4, 13, 14, 15, 16grpsubinv 17689 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ((invg𝐺)‘𝑦)) = (𝑥(+g𝐺)𝑦))
1817mpt2eq3dva 6884 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦)))
19 eqid 2760 . . . . . . 7 (+𝑓𝐺) = (+𝑓𝐺)
2011, 12, 19plusffval 17448 . . . . . 6 (+𝑓𝐺) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝐺)𝑦))
2118, 20syl6eqr 2812 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) = (+𝑓𝐺))
2211, 3istps 20940 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2310, 22sylib 208 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
2423, 23cnmpt1st 21673 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2523, 23cnmpt2nd 21674 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2611, 13grpinvf 17667 . . . . . . . . . . 11 (𝐺 ∈ Grp → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
27263ad2ant1 1128 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺):(Base‘𝐺)⟶(Base‘𝐺))
2827feqmptd 6411 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)))
29 eqid 2760 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
3011, 4, 13, 29grpinvval2 17699 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
317, 30sylan 489 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ∧ 𝑥 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑥) = ((0g𝐺) 𝑥))
3231mpteq2dva 4896 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑥)) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3328, 32eqtrd 2794 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) = (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)))
3411, 29grpidcl 17651 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
35343ad2ant1 1128 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (0g𝐺) ∈ (Base‘𝐺))
3623, 23, 35cnmptc 21667 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
3723cnmptid 21666 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
38 simp3 1133 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
3923, 36, 37, 38cnmpt12f 21671 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺) ↦ ((0g𝐺) 𝑥)) ∈ (𝐽 Cn 𝐽))
4033, 39eqeltrd 2839 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (invg𝐺) ∈ (𝐽 Cn 𝐽))
4123, 23, 25, 40cnmpt21f 21677 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ ((invg𝐺)‘𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4223, 23, 24, 41, 38cnmpt22f 21680 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥 ((invg𝐺)‘𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4321, 42eqeltrrd 2840 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4419, 3istmd 22079 . . . 4 (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ (+𝑓𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
459, 10, 43, 44syl3anbrc 1429 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopMnd)
463, 13istgp 22082 . . 3 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopMnd ∧ (invg𝐺) ∈ (𝐽 Cn 𝐽)))
477, 45, 40, 46syl3anbrc 1429 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) → 𝐺 ∈ TopGrp)
486, 47impbii 199 1 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ∈ ((𝐽 ×t 𝐽) Cn 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1072   = wceq 1632  wcel 2139  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  cmpt2 6815  Basecbs 16059  +gcplusg 16143  TopOpenctopn 16284  0gc0g 16302  +𝑓cplusf 17440  Mndcmnd 17495  Grpcgrp 17623  invgcminusg 17624  -gcsg 17625  TopOnctopon 20917  TopSpctps 20938   Cn ccn 21230   ×t ctx 21565  TopMndctmd 22075  TopGrpctgp 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025  df-0g 16304  df-topgen 16306  df-plusf 17442  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-cnp 21234  df-tx 21567  df-tmd 22077  df-tgp 22078
This theorem is referenced by:  distgp  22104  indistgp  22105  qustgplem  22125  ngptgp  22641  cnfldtgp  22873
  Copyright terms: Public domain W3C validator