Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls3 Structured version   Visualization version   GIF version

Theorem elcls3 21081
 Description: Membership in a closure in terms of the members of a basis. Theorem 6.5(b) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
elcls3.1 (𝜑𝐽 = (topGen‘𝐵))
elcls3.2 (𝜑𝑋 = 𝐽)
elcls3.3 (𝜑𝐵 ∈ TopBases)
elcls3.4 (𝜑𝑆𝑋)
elcls3.5 (𝜑𝑃𝑋)
Assertion
Ref Expression
elcls3 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥)   𝑋(𝑥)

Proof of Theorem elcls3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcls3.1 . . . 4 (𝜑𝐽 = (topGen‘𝐵))
2 elcls3.3 . . . . 5 (𝜑𝐵 ∈ TopBases)
3 tgcl 20967 . . . . 5 (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top)
42, 3syl 17 . . . 4 (𝜑 → (topGen‘𝐵) ∈ Top)
51, 4eqeltrd 2831 . . 3 (𝜑𝐽 ∈ Top)
6 elcls3.4 . . . 4 (𝜑𝑆𝑋)
7 elcls3.2 . . . 4 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 3774 . . 3 (𝜑𝑆 𝐽)
9 elcls3.5 . . . 4 (𝜑𝑃𝑋)
109, 7eleqtrd 2833 . . 3 (𝜑𝑃 𝐽)
11 eqid 2752 . . . 4 𝐽 = 𝐽
1211elcls 21071 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
135, 8, 10, 12syl3anc 1473 . 2 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
14 bastg 20964 . . . . . . . . 9 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
152, 14syl 17 . . . . . . . 8 (𝜑𝐵 ⊆ (topGen‘𝐵))
1615, 1sseqtr4d 3775 . . . . . . 7 (𝜑𝐵𝐽)
1716sseld 3735 . . . . . 6 (𝜑 → (𝑦𝐵𝑦𝐽))
1817imim1d 82 . . . . 5 (𝜑 → ((𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅)) → (𝑦𝐵 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
1918ralimdv2 3091 . . . 4 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
20 eleq2w 2815 . . . . . 6 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
21 ineq1 3942 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝑆) = (𝑥𝑆))
2221neeq1d 2983 . . . . . 6 (𝑦 = 𝑥 → ((𝑦𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2320, 22imbi12d 333 . . . . 5 (𝑦 = 𝑥 → ((𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
2423cbvralv 3302 . . . 4 (∀𝑦𝐵 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
2519, 24syl6ib 241 . . 3 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) → ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
26 simprl 811 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦𝐽)
271ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝐽 = (topGen‘𝐵))
2826, 27eleqtrd 2833 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑦 ∈ (topGen‘𝐵))
29 simprr 813 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → 𝑃𝑦)
30 tg2 20963 . . . . . . 7 ((𝑦 ∈ (topGen‘𝐵) ∧ 𝑃𝑦) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
3128, 29, 30syl2anc 696 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → ∃𝑧𝐵 (𝑃𝑧𝑧𝑦))
32 eleq2w 2815 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
33 ineq1 3942 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥𝑆) = (𝑧𝑆))
3433neeq1d 2983 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑥𝑆) ≠ ∅ ↔ (𝑧𝑆) ≠ ∅))
3532, 34imbi12d 333 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑧 → (𝑧𝑆) ≠ ∅)))
3635rspccva 3440 . . . . . . . . . . . 12 ((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) → (𝑃𝑧 → (𝑧𝑆) ≠ ∅))
3736imp 444 . . . . . . . . . . 11 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑆) ≠ ∅)
38 ssdisj 4162 . . . . . . . . . . . . 13 ((𝑧𝑦 ∧ (𝑦𝑆) = ∅) → (𝑧𝑆) = ∅)
3938ex 449 . . . . . . . . . . . 12 (𝑧𝑦 → ((𝑦𝑆) = ∅ → (𝑧𝑆) = ∅))
4039necon3d 2945 . . . . . . . . . . 11 (𝑧𝑦 → ((𝑧𝑆) ≠ ∅ → (𝑦𝑆) ≠ ∅))
4137, 40syl5com 31 . . . . . . . . . 10 (((∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ 𝑧𝐵) ∧ 𝑃𝑧) → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))
4241exp31 631 . . . . . . . . 9 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → (𝑃𝑧 → (𝑧𝑦 → (𝑦𝑆) ≠ ∅))))
4342imp4a 615 . . . . . . . 8 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑧𝐵 → ((𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅)))
4443rexlimdv 3160 . . . . . . 7 (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4544ad2antlr 765 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (∃𝑧𝐵 (𝑃𝑧𝑧𝑦) → (𝑦𝑆) ≠ ∅))
4631, 45mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) ∧ (𝑦𝐽𝑃𝑦)) → (𝑦𝑆) ≠ ∅)
4746exp43 641 . . . 4 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑆) ≠ ∅))))
4847ralrimdv 3098 . . 3 (𝜑 → (∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → ∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅)))
4925, 48impbid 202 . 2 (𝜑 → (∀𝑦𝐽 (𝑃𝑦 → (𝑦𝑆) ≠ ∅) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5013, 49bitrd 268 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐵 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1624   ∈ wcel 2131   ≠ wne 2924  ∀wral 3042  ∃wrex 3043   ∩ cin 3706   ⊆ wss 3707  ∅c0 4050  ∪ cuni 4580  ‘cfv 6041  topGenctg 16292  Topctop 20892  TopBasesctb 20943  clsccl 21016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-topgen 16298  df-top 20893  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019 This theorem is referenced by:  2ndcsep  21456  ptclsg  21612  qdensere  22766
 Copyright terms: Public domain W3C validator