MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2eqpr Structured version   Visualization version   GIF version

Theorem en2eqpr 8911
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2eqpr ((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))

Proof of Theorem en2eqpr
StepHypRef Expression
1 2onn 7808 . . . . . 6 2𝑜 ∈ ω
2 nnfi 8237 . . . . . 6 (2𝑜 ∈ ω → 2𝑜 ∈ Fin)
31, 2ax-mp 5 . . . . 5 2𝑜 ∈ Fin
4 simpl1 1146 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ≈ 2𝑜)
5 enfii 8261 . . . . 5 ((2𝑜 ∈ Fin ∧ 𝐶 ≈ 2𝑜) → 𝐶 ∈ Fin)
63, 4, 5sylancr 698 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 ∈ Fin)
7 simpl2 1147 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐴𝐶)
8 simpl3 1148 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐵𝐶)
9 prssi 4429 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
107, 8, 9syl2anc 696 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ⊆ 𝐶)
11 pr2nelem 8908 . . . . . . 7 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
12113expa 1111 . . . . . 6 (((𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
13123adantl1 1290 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
144ensymd 8091 . . . . 5 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 2𝑜𝐶)
15 entr 8092 . . . . 5 (({𝐴, 𝐵} ≈ 2𝑜 ∧ 2𝑜𝐶) → {𝐴, 𝐵} ≈ 𝐶)
1613, 14, 15syl2anc 696 . . . 4 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} ≈ 𝐶)
17 fisseneq 8255 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶 ∧ {𝐴, 𝐵} ≈ 𝐶) → {𝐴, 𝐵} = 𝐶)
186, 10, 16, 17syl3anc 1407 . . 3 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → {𝐴, 𝐵} = 𝐶)
1918eqcomd 2698 . 2 (((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) ∧ 𝐴𝐵) → 𝐶 = {𝐴, 𝐵})
2019ex 449 1 ((𝐶 ≈ 2𝑜𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐶 = {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1564  wcel 2071  wne 2864  wss 3648  {cpr 4255   class class class wbr 4728  ωcom 7150  2𝑜c2o 7642  cen 8037  Fincfn 8040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-ral 2987  df-rex 2988  df-reu 2989  df-rab 2991  df-v 3274  df-sbc 3510  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-br 4729  df-opab 4789  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-om 7151  df-1o 7648  df-2o 7649  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044
This theorem is referenced by:  isprm2lem  15485  en2top  20880
  Copyright terms: Public domain W3C validator