MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqneg Structured version   Visualization version   GIF version

Theorem eqneg 10597
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 10059 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
2 negid 10180 . . . 4 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
3 ax-1cn 9851 . . . . . 6 1 ∈ ℂ
43, 3addcli 9901 . . . . 5 (1 + 1) ∈ ℂ
54mul01i 10078 . . . 4 ((1 + 1) · 0) = 0
62, 5syl6reqr 2663 . . 3 (𝐴 ∈ ℂ → ((1 + 1) · 0) = (𝐴 + -𝐴))
71, 6eqeq12d 2625 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ (𝐴 + 𝐴) = (𝐴 + -𝐴)))
8 id 22 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
9 0cnd 9890 . . 3 (𝐴 ∈ ℂ → 0 ∈ ℂ)
104a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ∈ ℂ)
11 1re 9896 . . . . . 6 1 ∈ ℝ
1211, 11readdcli 9910 . . . . 5 (1 + 1) ∈ ℝ
13 0lt1 10402 . . . . . 6 0 < 1
1411, 11, 13, 13addgt0ii 10422 . . . . 5 0 < (1 + 1)
1512, 14gt0ne0ii 10416 . . . 4 (1 + 1) ≠ 0
1615a1i 11 . . 3 (𝐴 ∈ ℂ → (1 + 1) ≠ 0)
178, 9, 10, 16mulcand 10512 . 2 (𝐴 ∈ ℂ → (((1 + 1) · 𝐴) = ((1 + 1) · 0) ↔ 𝐴 = 0))
18 negcl 10133 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
198, 8, 18addcand 10091 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) = (𝐴 + -𝐴) ↔ 𝐴 = -𝐴))
207, 17, 193bitr3rd 298 1 (𝐴 ∈ ℂ → (𝐴 = -𝐴𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780  (class class class)co 6527  cc 9791  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798  -cneg 10119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121
This theorem is referenced by:  eqnegd  10598  eqnegi  10606
  Copyright terms: Public domain W3C validator