MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2o Structured version   Visualization version   GIF version

Theorem fnpr2o 16830
Description: Function with a domain of 2o. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fnpr2o ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)

Proof of Theorem fnpr2o
StepHypRef Expression
1 peano1 7601 . . . 4 ∅ ∈ ω
21a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ∈ ω)
3 1onn 8265 . . . 4 1o ∈ ω
43a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → 1o ∈ ω)
5 simpl 485 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 487 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
7 1n0 8119 . . . . 5 1o ≠ ∅
87necomi 3070 . . . 4 ∅ ≠ 1o
98a1i 11 . . 3 ((𝐴𝑉𝐵𝑊) → ∅ ≠ 1o)
10 fnprg 6413 . . 3 (((∅ ∈ ω ∧ 1o ∈ ω) ∧ (𝐴𝑉𝐵𝑊) ∧ ∅ ≠ 1o) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
112, 4, 5, 6, 9, 10syl221anc 1377 . 2 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
12 df2o3 8117 . . 3 2o = {∅, 1o}
1312fneq2i 6451 . 2 ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o ↔ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn {∅, 1o})
1411, 13sylibr 236 1 ((𝐴𝑉𝐵𝑊) → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} Fn 2o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wne 3016  c0 4291  {cpr 4569  cop 4573   Fn wfn 6350  ωcom 7580  1oc1o 8095  2oc2o 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-fun 6357  df-fn 6358  df-om 7581  df-1o 8102  df-2o 8103
This theorem is referenced by:  fnpr2ob  16831  xpsfeq  16836  xpsfrnel2  16837  xpsrnbas  16844  xpsaddlem  16846  xpsvsca  16850  xpsle  16852  xpstopnlem1  22417  xpstopnlem2  22419  xpsxmetlem  22989  xpsdsval  22991  xpsmet  22992
  Copyright terms: Public domain W3C validator