MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fores Structured version   Visualization version   GIF version

Theorem fores 6086
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))

Proof of Theorem fores
StepHypRef Expression
1 funres 5892 . . 3 (Fun 𝐹 → Fun (𝐹𝐴))
21anim1i 591 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
3 df-fn 5855 . . 3 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
4 df-ima 5092 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
54eqcomi 2630 . . . 4 ran (𝐹𝐴) = (𝐹𝐴)
6 df-fo 5858 . . . 4 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴)))
75, 6mpbiran2 953 . . 3 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴) Fn 𝐴)
8 ssdmres 5384 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹𝐴) = 𝐴)
98anbi2i 729 . . 3 ((Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
103, 7, 93bitr4i 292 . 2 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
112, 10sylibr 224 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wss 3559  dom cdm 5079  ran crn 5080  cres 5081  cima 5082  Fun wfun 5846   Fn wfn 5847  ontowfo 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-res 5091  df-ima 5092  df-fun 5854  df-fn 5855  df-fo 5858
This theorem is referenced by:  resdif  6119  f1oweALT  7104  imafi  8210  f1opwfi  8221  fodomfi2  8834  fin1a2lem7  9179  znnen  14873  connima  21147  1stcfb  21167  1stckgenlem  21275  qtoprest  21439  re2ndc  22523  uniiccdif  23265  opnmblALT  23290  mbfimaopnlem  23341  ffsrn  29365  erdszelem2  30909  ivthALT  31999  poimirlem26  33094  poimirlem27  33095  lmhmfgima  37161
  Copyright terms: Public domain W3C validator