MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Structured version   Visualization version   GIF version

Theorem znnen 14729
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
StepHypRef Expression
1 omelon 8404 . . . . . 6 ω ∈ On
2 nnenom 12599 . . . . . . 7 ℕ ≈ ω
32ensymi 7870 . . . . . 6 ω ≈ ℕ
4 isnumi 8633 . . . . . 6 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 703 . . . . 5 ℕ ∈ dom card
6 xpnum 8638 . . . . 5 ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card)
75, 5, 6mp2an 703 . . . 4 (ℕ × ℕ) ∈ dom card
8 subf 10135 . . . . . . 7 − :(ℂ × ℂ)⟶ℂ
9 ffun 5947 . . . . . . 7 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
108, 9ax-mp 5 . . . . . 6 Fun −
11 nnsscn 10875 . . . . . . . 8 ℕ ⊆ ℂ
12 xpss12 5137 . . . . . . . 8 ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ))
1311, 11, 12mp2an 703 . . . . . . 7 (ℕ × ℕ) ⊆ (ℂ × ℂ)
148fdmi 5951 . . . . . . 7 dom − = (ℂ × ℂ)
1513, 14sseqtr4i 3600 . . . . . 6 (ℕ × ℕ) ⊆ dom −
16 fores 6022 . . . . . 6 ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
1710, 15, 16mp2an 703 . . . . 5 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))
18 dfz2 11231 . . . . . 6 ℤ = ( − “ (ℕ × ℕ))
19 foeq3 6011 . . . . . 6 (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))))
2018, 19ax-mp 5 . . . . 5 (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
2117, 20mpbir 219 . . . 4 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ
22 fodomnum 8741 . . . 4 ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ)))
237, 21, 22mp2 9 . . 3 ℤ ≼ (ℕ × ℕ)
24 xpnnen 14727 . . 3 (ℕ × ℕ) ≈ ℕ
25 domentr 7879 . . 3 ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ)
2623, 24, 25mp2an 703 . 2 ℤ ≼ ℕ
27 zex 11222 . . 3 ℤ ∈ V
28 nnssz 11233 . . 3 ℕ ⊆ ℤ
29 ssdomg 7865 . . 3 (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ))
3027, 28, 29mp2 9 . 2 ℕ ≼ ℤ
31 sbth 7943 . 2 ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ)
3226, 30, 31mp2an 703 1 ℤ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 194   = wceq 1474  wcel 1976  Vcvv 3172  wss 3539   class class class wbr 4577   × cxp 5026  dom cdm 5028  cres 5030  cima 5031  Oncon0 5626  Fun wfun 5784  wf 5786  ontowfo 5788  ωcom 6935  cen 7816  cdom 7817  cardccrd 8622  cc 9791  cmin 10118  cn 10870  cz 11213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-oi 8276  df-card 8626  df-acn 8629  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143  df-z 11214  df-uz 11523
This theorem is referenced by:  qnnen  14730  odinf  17752  odhash  17761  cygctb  18065  iscmet3  22844  dyadmbl  23119  mbfsup  23182  dya2iocct  29503  zenom  38068
  Copyright terms: Public domain W3C validator