MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullsubc Structured version   Visualization version   GIF version

Theorem fullsubc 16281
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of [Adamek] p. 48. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
Assertion
Ref Expression
fullsubc (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))

Proof of Theorem fullsubc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . 5 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . 5 𝐵 = (Base‘𝐶)
31, 2homffn 16124 . . . 4 𝐻 Fn (𝐵 × 𝐵)
4 fvex 6097 . . . . 5 (Base‘𝐶) ∈ V
52, 4eqeltri 2683 . . . 4 𝐵 ∈ V
6 sscres 16254 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ 𝐵 ∈ V) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
73, 5, 6mp2an 703 . . 3 (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻
87a1i 11 . 2 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
9 eqid 2609 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2609 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
11 fullsubc.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
1211adantr 479 . . . . . 6 ((𝜑𝑥𝑆) → 𝐶 ∈ Cat)
13 fullsubc.s . . . . . . 7 (𝜑𝑆𝐵)
1413sselda 3567 . . . . . 6 ((𝜑𝑥𝑆) → 𝑥𝐵)
152, 9, 10, 12, 14catidcl 16114 . . . . 5 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
16 simpr 475 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥𝑆)
1716, 16ovresd 6676 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥𝐻𝑥))
181, 2, 9, 14, 14homfval 16123 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥𝐻𝑥) = (𝑥(Hom ‘𝐶)𝑥))
1917, 18eqtrd 2643 . . . . 5 ((𝜑𝑥𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) = (𝑥(Hom ‘𝐶)𝑥))
2015, 19eleqtrrd 2690 . . . 4 ((𝜑𝑥𝑆) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥))
21 eqid 2609 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
2212ad3antrrr 761 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
2314ad3antrrr 761 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝐵)
2413adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → 𝑆𝐵)
2524sselda 3567 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝐵)
2625adantr 479 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝐵)
2726adantr 479 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦𝐵)
2824adantr 479 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑆𝐵)
2928sselda 3567 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝐵)
3029adantr 479 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝐵)
31 simprl 789 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
32 simprr 791 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
332, 9, 21, 22, 23, 27, 30, 31, 32catcocl 16117 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
3416ad3antrrr 761 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥𝑆)
35 simplr 787 . . . . . . . . . . 11 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧𝑆)
3634, 35ovresd 6676 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥𝐻𝑧))
371, 2, 9, 23, 30homfval 16123 . . . . . . . . . 10 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥𝐻𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3836, 37eqtrd 2643 . . . . . . . . 9 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑥(Hom ‘𝐶)𝑧))
3933, 38eleqtrrd 2690 . . . . . . . 8 (((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
4039ralrimivva 2953 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
41 simplr 787 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝑆)
42 simpr 475 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑦𝑆)
4341, 42ovresd 6676 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
4414adantr 479 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → 𝑥𝐵)
451, 2, 9, 44, 25homfval 16123 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4643, 45eqtrd 2643 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4746adantr 479 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐶)𝑦))
48 simplr 787 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
49 simpr 475 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
5048, 49ovresd 6676 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦𝐻𝑧))
511, 2, 9, 26, 29homfval 16123 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦𝐻𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5250, 51eqtrd 2643 . . . . . . . . 9 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧) = (𝑦(Hom ‘𝐶)𝑧))
5352raleqdv 3120 . . . . . . . 8 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5447, 53raleqbidv 3128 . . . . . . 7 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5540, 54mpbird 245 . . . . . 6 ((((𝜑𝑥𝑆) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ∀𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5655ralrimiva 2948 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝑦𝑆) → ∀𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5756ralrimiva 2948 . . . 4 ((𝜑𝑥𝑆) → ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧))
5820, 57jca 552 . . 3 ((𝜑𝑥𝑆) → (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
5958ralrimiva 2948 . 2 (𝜑 → ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))
60 xpss12 5136 . . . . 5 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
6113, 13, 60syl2anc 690 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
62 fnssres 5903 . . . 4 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
633, 61, 62sylancr 693 . . 3 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
641, 10, 21, 11, 63issubc2 16267 . 2 (𝜑 → ((𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶) ↔ ((𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻 ∧ ∀𝑥𝑆 (((Id‘𝐶)‘𝑥) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦)∀𝑔 ∈ (𝑦(𝐻 ↾ (𝑆 × 𝑆))𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑧)))))
658, 59, 64mpbir2and 958 1 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539  cop 4130   class class class wbr 4577   × cxp 5025  cres 5029   Fn wfn 5784  cfv 5789  (class class class)co 6526  Basecbs 15643  Hom chom 15727  compcco 15728  Catccat 16096  Idccid 16097  Homf chomf 16098  cat cssc 16238  Subcatcsubc 16240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-1st 7036  df-2nd 7037  df-pm 7724  df-ixp 7772  df-cat 16100  df-cid 16101  df-homf 16102  df-ssc 16241  df-subc 16243
This theorem is referenced by:  resscat  16283  funcres2c  16332  ressffth  16369  funcsetcres2  16514
  Copyright terms: Public domain W3C validator