Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelrn Structured version   Visualization version   GIF version

Theorem fvelrn 6310
 Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
fvelrn ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)

Proof of Theorem fvelrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2686 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝐹𝐴 ∈ dom 𝐹))
21anbi2d 739 . . . 4 (𝑥 = 𝐴 → ((Fun 𝐹𝑥 ∈ dom 𝐹) ↔ (Fun 𝐹𝐴 ∈ dom 𝐹)))
3 fveq2 6150 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
43eleq1d 2683 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥) ∈ ran 𝐹 ↔ (𝐹𝐴) ∈ ran 𝐹))
52, 4imbi12d 334 . . 3 (𝑥 = 𝐴 → (((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹) ↔ ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)))
6 funfvop 6287 . . . . 5 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
7 vex 3189 . . . . . 6 𝑥 ∈ V
8 opeq1 4372 . . . . . . 7 (𝑦 = 𝑥 → ⟨𝑦, (𝐹𝑥)⟩ = ⟨𝑥, (𝐹𝑥)⟩)
98eleq1d 2683 . . . . . 6 (𝑦 = 𝑥 → (⟨𝑦, (𝐹𝑥)⟩ ∈ 𝐹 ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹))
107, 9spcev 3286 . . . . 5 (⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹 → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
116, 10syl 17 . . . 4 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
12 fvex 6160 . . . . 5 (𝐹𝑥) ∈ V
1312elrn2 5327 . . . 4 ((𝐹𝑥) ∈ ran 𝐹 ↔ ∃𝑦𝑦, (𝐹𝑥)⟩ ∈ 𝐹)
1411, 13sylibr 224 . . 3 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
155, 14vtoclg 3252 . 2 (𝐴 ∈ dom 𝐹 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹))
1615anabsi7 859 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ⟨cop 4156  dom cdm 5076  ran crn 5077  Fun wfun 5843  ‘cfv 5849 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-iota 5812  df-fun 5851  df-fn 5852  df-fv 5857 This theorem is referenced by:  nelrnfvne  6311  fnfvelrn  6314  eldmrexrn  6323  fvn0fvelrn  6387  funfvima  6449  elunirn  6466  rankwflemb  8603  dfac9  8905  fin1a2lem6  9174  gsumpropd2lem  17197  usgredg3  26008  ushgredgedg  26021  ushgredgedgloop  26023  subgruhgredgd  26076  edginwlk  26407  iedginwlk  26409  opfv  29302  nofv  31532  sltres  31539  bdayelon  31564  nodenselem3  31567  nosino  31596  bj-elccinfty  32755  bj-minftyccb  32766  icoreunrn  32860  indexdom  33182  diaclN  35840  dia1elN  35844  docaclN  35914  dibclN  35952  dfac21  37137  gneispace  37935  cncmpmax  38695  icccncfext  39421  stoweidlem27  39567  stoweidlem29  39569  stoweidlem59  39599  fourierdlem20  39667  fourierdlem63  39709  fourierdlem76  39722  fourierdlem82  39728  fourierdlem93  39739  fourierdlem113  39759  fge0iccico  39910  sge0sn  39919  sge0tsms  39920  sge0cl  39921  sge0isum  39967  hoicvr  40085  afvelrn  40568  suppdm  41604
 Copyright terms: Public domain W3C validator