Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem29 Structured version   Visualization version   GIF version

Theorem stoweidlem29 42334
Description: When the hypothesis for the extreme value theorem hold, then the inf of the range of the function belongs to the range, it is real and it a lower bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem29.1 𝑡𝐹
stoweidlem29.2 𝑡𝜑
stoweidlem29.3 𝑇 = 𝐽
stoweidlem29.4 𝐾 = (topGen‘ran (,))
stoweidlem29.5 (𝜑𝐽 ∈ Comp)
stoweidlem29.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
stoweidlem29.7 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
stoweidlem29 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Distinct variable groups:   𝑡,𝑇   𝑡,𝐽   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑡)

Proof of Theorem stoweidlem29
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem29.4 . . . . . 6 𝐾 = (topGen‘ran (,))
2 stoweidlem29.3 . . . . . 6 𝑇 = 𝐽
3 eqid 2821 . . . . . 6 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 stoweidlem29.6 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 41302 . . . . 5 (𝜑𝐹:𝑇⟶ℝ)
6 df-f 6359 . . . . 5 (𝐹:𝑇⟶ℝ ↔ (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
75, 6sylib 220 . . . 4 (𝜑 → (𝐹 Fn 𝑇 ∧ ran 𝐹 ⊆ ℝ))
87simprd 498 . . 3 (𝜑 → ran 𝐹 ⊆ ℝ)
97simpld 497 . . . . . . . . 9 (𝜑𝐹 Fn 𝑇)
10 fnfun 6453 . . . . . . . . 9 (𝐹 Fn 𝑇 → Fun 𝐹)
119, 10syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
1211adantr 483 . . . . . . 7 ((𝜑𝑠𝑇) → Fun 𝐹)
135fdmd 6523 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑇)
1413eqcomd 2827 . . . . . . . . 9 (𝜑𝑇 = dom 𝐹)
1514eleq2d 2898 . . . . . . . 8 (𝜑 → (𝑠𝑇𝑠 ∈ dom 𝐹))
1615biimpa 479 . . . . . . 7 ((𝜑𝑠𝑇) → 𝑠 ∈ dom 𝐹)
17 fvelrn 6844 . . . . . . 7 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
1812, 16, 17syl2anc 586 . . . . . 6 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ran 𝐹)
19 stoweidlem29.1 . . . . . . . . . 10 𝑡𝐹
20 nfcv 2977 . . . . . . . . . 10 𝑡𝑠
2119, 20nffv 6680 . . . . . . . . 9 𝑡(𝐹𝑠)
2221nfeq2 2995 . . . . . . . 8 𝑡 𝑥 = (𝐹𝑠)
23 breq1 5069 . . . . . . . 8 (𝑥 = (𝐹𝑠) → (𝑥 ≤ (𝐹𝑡) ↔ (𝐹𝑠) ≤ (𝐹𝑡)))
2422, 23ralbid 3231 . . . . . . 7 (𝑥 = (𝐹𝑠) → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ↔ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)))
2524rspcev 3623 . . . . . 6 (((𝐹𝑠) ∈ ran 𝐹 ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
2618, 25sylan 582 . . . . 5 (((𝜑𝑠𝑇) ∧ ∀𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡)) → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
27 nfcv 2977 . . . . . 6 𝑠𝐹
28 nfcv 2977 . . . . . 6 𝑠𝑇
29 nfcv 2977 . . . . . 6 𝑡𝑇
30 stoweidlem29.5 . . . . . 6 (𝜑𝐽 ∈ Comp)
31 stoweidlem29.7 . . . . . 6 (𝜑𝑇 ≠ ∅)
3227, 19, 28, 29, 2, 1, 30, 4, 31evth2f 41292 . . . . 5 (𝜑 → ∃𝑠𝑇𝑡𝑇 (𝐹𝑠) ≤ (𝐹𝑡))
3326, 32r19.29a 3289 . . . 4 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡))
34 nfv 1915 . . . . . . 7 𝑦(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
35 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
369ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝐹 Fn 𝑇)
37 nfcv 2977 . . . . . . . . . . . 12 𝑡𝑦
3829, 37, 19fvelrnbf 41295 . . . . . . . . . . 11 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
3936, 38syl 17 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑡𝑇 (𝐹𝑡) = 𝑦))
4035, 39mpbid 234 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑡𝑇 (𝐹𝑡) = 𝑦)
41 stoweidlem29.2 . . . . . . . . . . . 12 𝑡𝜑
42 nfra1 3219 . . . . . . . . . . . 12 𝑡𝑡𝑇 𝑥 ≤ (𝐹𝑡)
4341, 42nfan 1900 . . . . . . . . . . 11 𝑡(𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡))
4419nfrn 5824 . . . . . . . . . . . 12 𝑡ran 𝐹
4544nfcri 2971 . . . . . . . . . . 11 𝑡 𝑦 ∈ ran 𝐹
4643, 45nfan 1900 . . . . . . . . . 10 𝑡((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹)
47 nfv 1915 . . . . . . . . . 10 𝑡 𝑥𝑦
48 rspa 3206 . . . . . . . . . . . . 13 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → 𝑥 ≤ (𝐹𝑡))
49 breq2 5070 . . . . . . . . . . . . 13 ((𝐹𝑡) = 𝑦 → (𝑥 ≤ (𝐹𝑡) ↔ 𝑥𝑦))
5048, 49syl5ibcom 247 . . . . . . . . . . . 12 ((∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) ∧ 𝑡𝑇) → ((𝐹𝑡) = 𝑦𝑥𝑦))
5150ex 415 . . . . . . . . . . 11 (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5251ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (𝑡𝑇 → ((𝐹𝑡) = 𝑦𝑥𝑦)))
5346, 47, 52rexlimd 3317 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → (∃𝑡𝑇 (𝐹𝑡) = 𝑦𝑥𝑦))
5440, 53mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) ∧ 𝑦 ∈ ran 𝐹) → 𝑥𝑦)
5554ex 415 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → (𝑦 ∈ ran 𝐹𝑥𝑦))
5634, 55ralrimi 3216 . . . . . 6 ((𝜑 ∧ ∀𝑡𝑇 𝑥 ≤ (𝐹𝑡)) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦)
5756ex 415 . . . . 5 (𝜑 → (∀𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∀𝑦 ∈ ran 𝐹 𝑥𝑦))
5857reximdv 3273 . . . 4 (𝜑 → (∃𝑥 ∈ ran 𝐹𝑡𝑇 𝑥 ≤ (𝐹𝑡) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦))
5933, 58mpd 15 . . 3 (𝜑 → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
60 lbinfcl 11595 . . 3 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦) → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
618, 59, 60syl2anc 586 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
628, 61sseldd 3968 . 2 (𝜑 → inf(ran 𝐹, ℝ, < ) ∈ ℝ)
638adantr 483 . . . . 5 ((𝜑𝑡𝑇) → ran 𝐹 ⊆ ℝ)
6459adantr 483 . . . . 5 ((𝜑𝑡𝑇) → ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦)
65 dffn3 6525 . . . . . . 7 (𝐹 Fn 𝑇𝐹:𝑇⟶ran 𝐹)
669, 65sylib 220 . . . . . 6 (𝜑𝐹:𝑇⟶ran 𝐹)
6766ffvelrnda 6851 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ran 𝐹)
68 lbinfle 11596 . . . . 5 ((ran 𝐹 ⊆ ℝ ∧ ∃𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹 𝑥𝑦 ∧ (𝐹𝑡) ∈ ran 𝐹) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
6963, 64, 67, 68syl3anc 1367 . . . 4 ((𝜑𝑡𝑇) → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7069ex 415 . . 3 (𝜑 → (𝑡𝑇 → inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
7141, 70ralrimi 3216 . 2 (𝜑 → ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡))
7261, 62, 713jca 1124 1 (𝜑 → (inf(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ inf(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 inf(ran 𝐹, ℝ, < ) ≤ (𝐹𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wnfc 2961  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   cuni 4838   class class class wbr 5066  dom cdm 5555  ran crn 5556  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  infcinf 8905  cr 10536   < clt 10675  cle 10676  (,)cioo 12739  topGenctg 16711   Cn ccn 21832  Compccmp 21994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932
This theorem is referenced by:  stoweidlem62  42367
  Copyright terms: Public domain W3C validator