MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhmb Structured version   Visualization version   GIF version

Theorem ghmmhmb 18369
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhmb ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhmb
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 18368 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) → 𝑓 ∈ (𝑆 MndHom 𝑇))
2 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2821 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
4 eqid 2821 . . . . 5 (+g𝑆) = (+g𝑆)
5 eqid 2821 . . . . 5 (+g𝑇) = (+g𝑇)
6 simpll 765 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Grp)
7 simplr 767 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑇 ∈ Grp)
82, 3mhmf 17961 . . . . . 6 (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇))
98adantl 484 . . . . 5 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇))
102, 4, 5mhmlin 17963 . . . . . . 7 ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
11103expb 1116 . . . . . 6 ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
1211adantll 712 . . . . 5 ((((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
132, 3, 4, 5, 6, 7, 9, 12isghmd 18367 . . . 4 (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓 ∈ (𝑆 GrpHom 𝑇))
1413ex 415 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓 ∈ (𝑆 GrpHom 𝑇)))
151, 14impbid2 228 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↔ 𝑓 ∈ (𝑆 MndHom 𝑇)))
1615eqrdv 2819 1 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565   MndHom cmhm 17954  Grpcgrp 18103   GrpHom cghm 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-ghm 18356
This theorem is referenced by:  0ghm  18372  resghm2  18375  resghm2b  18376  ghmco  18378  pwsdiagghm  18386  ghmpropd  18396  pwsco1rhm  19490  pwsco2rhm  19491  dchrghm  25832  c0ghm  44202  c0snghm  44207
  Copyright terms: Public domain W3C validator