MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval2a Structured version   Visualization version   GIF version

Theorem gsumval2a 17326
Description: Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval2.b 𝐵 = (Base‘𝐺)
gsumval2.p + = (+g𝐺)
gsumval2.g (𝜑𝐺𝑉)
gsumval2.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumval2.f (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
gsumval2a.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval2a.f (𝜑 → ¬ ran 𝐹𝑂)
Assertion
Ref Expression
gsumval2a (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝑉   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem gsumval2a
Dummy variables 𝑧 𝑓 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval2.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2651 . . . 4 (0g𝐺) = (0g𝐺)
3 gsumval2.p . . . 4 + = (+g𝐺)
4 gsumval2a.o . . . 4 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2652 . . . 4 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval2.g . . . 4 (𝜑𝐺𝑉)
7 ovexd 6720 . . . 4 (𝜑 → (𝑀...𝑁) ∈ V)
8 gsumval2.f . . . 4 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
91, 2, 3, 4, 5, 6, 7, 8gsumval 17318 . . 3 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))))
10 gsumval2a.f . . . . 5 (𝜑 → ¬ ran 𝐹𝑂)
1110iffalsed 4130 . . . 4 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))) = if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂))))))))
12 gsumval2.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
13 eluzel2 11730 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1412, 13syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
15 eluzelz 11735 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
1612, 15syl 17 . . . . . 6 (𝜑𝑁 ∈ ℤ)
17 fzf 12368 . . . . . . . 8 ...:(ℤ × ℤ)⟶𝒫 ℤ
18 ffn 6083 . . . . . . . 8 (...:(ℤ × ℤ)⟶𝒫 ℤ → ... Fn (ℤ × ℤ))
1917, 18ax-mp 5 . . . . . . 7 ... Fn (ℤ × ℤ)
20 fnovrn 6851 . . . . . . 7 ((... Fn (ℤ × ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ ran ...)
2119, 20mp3an1 1451 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ ran ...)
2214, 16, 21syl2anc 694 . . . . 5 (𝜑 → (𝑀...𝑁) ∈ ran ...)
2322iftrued 4127 . . . 4 (𝜑 → if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
2411, 23eqtrd 2685 . . 3 (𝜑 → if(ran 𝐹𝑂, (0g𝐺), if((𝑀...𝑁) ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(#‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ 𝑂)))))))) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
259, 24eqtrd 2685 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
26 fvex 6239 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
27 fzopth 12416 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
2812, 27syl 17 . . . . . . . . . 10 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀 = 𝑚𝑁 = 𝑛)))
29 simpl 472 . . . . . . . . . . . . . 14 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑀 = 𝑚)
3029seqeq1d 12847 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → seq𝑀( + , 𝐹) = seq𝑚( + , 𝐹))
31 simpr 476 . . . . . . . . . . . . 13 ((𝑀 = 𝑚𝑁 = 𝑛) → 𝑁 = 𝑛)
3230, 31fveq12d 6235 . . . . . . . . . . . 12 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑚( + , 𝐹)‘𝑛))
3332eqcomd 2657 . . . . . . . . . . 11 ((𝑀 = 𝑚𝑁 = 𝑛) → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
34 eqeq1 2655 . . . . . . . . . . 11 (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) ↔ (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁)))
3533, 34syl5ibrcom 237 . . . . . . . . . 10 ((𝑀 = 𝑚𝑁 = 𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3628, 35syl6bi 243 . . . . . . . . 9 (𝜑 → ((𝑀...𝑁) = (𝑚...𝑛) → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁))))
3736impd 446 . . . . . . . 8 (𝜑 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3837rexlimdvw 3063 . . . . . . 7 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
3938exlimdv 1901 . . . . . 6 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) → 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4014adantr 480 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → 𝑀 ∈ ℤ)
41 oveq2 6698 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑀...𝑛) = (𝑀...𝑁))
4241eqcomd 2657 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑀...𝑁) = (𝑀...𝑛))
4342biantrurd 528 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
44 fveq2 6229 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
4544eqeq2d 2661 . . . . . . . . . . 11 (𝑛 = 𝑁 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4643, 45bitr3d 270 . . . . . . . . . 10 (𝑛 = 𝑁 → (((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
4746rspcev 3340 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
4812, 47sylan 487 . . . . . . . 8 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
49 fveq2 6229 . . . . . . . . . 10 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
50 oveq1 6697 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑚...𝑛) = (𝑀...𝑛))
5150eqeq2d 2661 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑀...𝑁) = (𝑚...𝑛) ↔ (𝑀...𝑁) = (𝑀...𝑛)))
52 seqeq1 12844 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → seq𝑚( + , 𝐹) = seq𝑀( + , 𝐹))
5352fveq1d 6231 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (seq𝑚( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑛))
5453eqeq2d 2661 . . . . . . . . . . 11 (𝑚 = 𝑀 → (𝑧 = (seq𝑚( + , 𝐹)‘𝑛) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)))
5551, 54anbi12d 747 . . . . . . . . . 10 (𝑚 = 𝑀 → (((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5649, 55rexeqbidv 3183 . . . . . . . . 9 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛))))
5756spcegv 3325 . . . . . . . 8 (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ𝑀)((𝑀...𝑁) = (𝑀...𝑛) ∧ 𝑧 = (seq𝑀( + , 𝐹)‘𝑛)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
5840, 48, 57sylc 65 . . . . . . 7 ((𝜑𝑧 = (seq𝑀( + , 𝐹)‘𝑁)) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)))
5958ex 449 . . . . . 6 (𝜑 → (𝑧 = (seq𝑀( + , 𝐹)‘𝑁) → ∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))))
6039, 59impbid 202 . . . . 5 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6160adantr 480 . . . 4 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (∃𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛)) ↔ 𝑧 = (seq𝑀( + , 𝐹)‘𝑁)))
6261iota5 5909 . . 3 ((𝜑 ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6326, 62mpan2 707 . 2 (𝜑 → (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)((𝑀...𝑁) = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))) = (seq𝑀( + , 𝐹)‘𝑁))
6425, 63eqtrd 2685 1 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  wss 3607  ifcif 4119  𝒫 cpw 4191   × cxp 5141  ccnv 5142  ran crn 5144  cima 5146  ccom 5147  cio 5887   Fn wfn 5921  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  1c1 9975  cz 11415  cuz 11725  ...cfz 12364  seqcseq 12841  #chash 13157  Basecbs 15904  +gcplusg 15988  0gc0g 16147   Σg cgsu 16148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-neg 10307  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-gsum 16150
This theorem is referenced by:  gsumval2  17327
  Copyright terms: Public domain W3C validator