Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt749d Structured version   Visualization version   GIF version

Theorem hgt749d 31922
Description: A deduction version of ax-hgt749 31917. (Contributed by Thierry Arnoux, 15-Dec-2021.)
Hypotheses
Ref Expression
hgt749d.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt749d.n (𝜑𝑁𝑂)
hgt749d.1 (𝜑 → (10↑27) ≤ 𝑁)
Assertion
Ref Expression
hgt749d (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Distinct variable groups:   ,𝑁,𝑘,𝑥   ,𝑚,𝑧,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑧,,𝑘,𝑚)   𝑁(𝑧,𝑚)   𝑂(𝑥,𝑧,,𝑘,𝑚)

Proof of Theorem hgt749d
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 hgt749d.1 . 2 (𝜑 → (10↑27) ≤ 𝑁)
2 breq2 5072 . . . 4 (𝑛 = 𝑁 → ((10↑27) ≤ 𝑛 ↔ (10↑27) ≤ 𝑁))
3 oveq1 7165 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛↑2) = (𝑁↑2))
43oveq2d 7174 . . . . . . . 8 (𝑛 = 𝑁 → ((0.00042248) · (𝑛↑2)) = ((0.00042248) · (𝑁↑2)))
5 oveq2 7166 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((Λ ∘f · )vts𝑛) = ((Λ ∘f · )vts𝑁))
65fveq1d 6674 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (((Λ ∘f · )vts𝑛)‘𝑥) = (((Λ ∘f · )vts𝑁)‘𝑥))
7 oveq2 7166 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → ((Λ ∘f · 𝑘)vts𝑛) = ((Λ ∘f · 𝑘)vts𝑁))
87fveq1d 6674 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (((Λ ∘f · 𝑘)vts𝑛)‘𝑥) = (((Λ ∘f · 𝑘)vts𝑁)‘𝑥))
98oveq1d 7173 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2) = ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2))
106, 9oveq12d 7176 . . . . . . . . . . 11 (𝑛 = 𝑁 → ((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) = ((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)))
11 negeq 10880 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → -𝑛 = -𝑁)
1211oveq1d 7173 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (-𝑛 · 𝑥) = (-𝑁 · 𝑥))
1312oveq2d 7174 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((i · (2 · π)) · (-𝑛 · 𝑥)) = ((i · (2 · π)) · (-𝑁 · 𝑥)))
1413fveq2d 6676 . . . . . . . . . . 11 (𝑛 = 𝑁 → (exp‘((i · (2 · π)) · (-𝑛 · 𝑥))) = (exp‘((i · (2 · π)) · (-𝑁 · 𝑥))))
1510, 14oveq12d 7176 . . . . . . . . . 10 (𝑛 = 𝑁 → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1615adantr 483 . . . . . . . . 9 ((𝑛 = 𝑁𝑥 ∈ (0(,)1)) → (((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) = (((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))))
1716itgeq2dv 24384 . . . . . . . 8 (𝑛 = 𝑁 → ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 = ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)
184, 17breq12d 5081 . . . . . . 7 (𝑛 = 𝑁 → (((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥 ↔ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
19183anbi3d 1438 . . . . . 6 (𝑛 = 𝑁 → ((∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ (∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2019rexbidv 3299 . . . . 5 (𝑛 = 𝑁 → (∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
2120rexbidv 3299 . . . 4 (𝑛 = 𝑁 → (∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥) ↔ ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
222, 21imbi12d 347 . . 3 (𝑛 = 𝑁 → (((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) ↔ ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))))
23 ax-hgt749 31917 . . . 4 𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
2423a1i 11 . . 3 (𝜑 → ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥)))
25 hgt749d.n . . . 4 (𝜑𝑁𝑂)
26 hgt749d.o . . . 4 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
2725, 26eleqtrdi 2925 . . 3 (𝜑𝑁 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧})
2822, 24, 27rspcdva 3627 . 2 (𝜑 → ((10↑27) ≤ 𝑁 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥)))
291, 28mpd 15 1 (𝜑 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑁↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑁)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑁)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑁 · 𝑥)))) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144   class class class wbr 5068  cfv 6357  (class class class)co 7158  f cof 7409  m cmap 8408  0cc0 10539  1c1 10540  ici 10541   · cmul 10544  +∞cpnf 10674  cle 10678  -cneg 10873  cn 11640  2c2 11695  4c4 11697  5c5 11698  7c7 11700  8c8 11701  9c9 11702  cz 11984  cdc 12101  (,)cioo 12741  [,)cico 12743  cexp 13432  expce 15417  πcpi 15422  cdvds 15609  citg 24221  Λcvma 25671  cdp2 30549  .cdp 30566  vtscvts 31908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hgt749 31917
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-sum 15045  df-itg 24226
This theorem is referenced by:  tgoldbachgtd  31935
  Copyright terms: Public domain W3C validator