HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4i Structured version   Visualization version   GIF version

Theorem hvsubsub4i 28836
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvass.1 𝐴 ∈ ℋ
hvass.2 𝐵 ∈ ℋ
hvass.3 𝐶 ∈ ℋ
hvadd4.4 𝐷 ∈ ℋ
Assertion
Ref Expression
hvsubsub4i ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷))

Proof of Theorem hvsubsub4i
StepHypRef Expression
1 hvass.1 . . . . 5 𝐴 ∈ ℋ
2 neg1cn 11752 . . . . . 6 -1 ∈ ℂ
3 hvass.2 . . . . . 6 𝐵 ∈ ℋ
42, 3hvmulcli 28791 . . . . 5 (-1 · 𝐵) ∈ ℋ
5 hvass.3 . . . . . 6 𝐶 ∈ ℋ
62, 5hvmulcli 28791 . . . . 5 (-1 · 𝐶) ∈ ℋ
7 hvadd4.4 . . . . . . 7 𝐷 ∈ ℋ
82, 7hvmulcli 28791 . . . . . 6 (-1 · 𝐷) ∈ ℋ
92, 8hvmulcli 28791 . . . . 5 (-1 · (-1 · 𝐷)) ∈ ℋ
101, 4, 6, 9hvadd4i 28835 . . . 4 ((𝐴 + (-1 · 𝐵)) + ((-1 · 𝐶) + (-1 · (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + ((-1 · 𝐵) + (-1 · (-1 · 𝐷))))
112, 5, 8hvdistr1i 28828 . . . . 5 (-1 · (𝐶 + (-1 · 𝐷))) = ((-1 · 𝐶) + (-1 · (-1 · 𝐷)))
1211oveq2i 7167 . . . 4 ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐵)) + ((-1 · 𝐶) + (-1 · (-1 · 𝐷))))
132, 3, 8hvdistr1i 28828 . . . . 5 (-1 · (𝐵 + (-1 · 𝐷))) = ((-1 · 𝐵) + (-1 · (-1 · 𝐷)))
1413oveq2i 7167 . . . 4 ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + ((-1 · 𝐵) + (-1 · (-1 · 𝐷))))
1510, 12, 143eqtr4i 2854 . . 3 ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷)))) = ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷))))
161, 4hvaddcli 28795 . . . 4 (𝐴 + (-1 · 𝐵)) ∈ ℋ
175, 8hvaddcli 28795 . . . 4 (𝐶 + (-1 · 𝐷)) ∈ ℋ
1816, 17hvsubvali 28797 . . 3 ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐵)) + (-1 · (𝐶 + (-1 · 𝐷))))
191, 6hvaddcli 28795 . . . 4 (𝐴 + (-1 · 𝐶)) ∈ ℋ
203, 8hvaddcli 28795 . . . 4 (𝐵 + (-1 · 𝐷)) ∈ ℋ
2119, 20hvsubvali 28797 . . 3 ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (-1 · (𝐵 + (-1 · 𝐷))))
2215, 18, 213eqtr4i 2854 . 2 ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷))) = ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷)))
231, 3hvsubvali 28797 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
245, 7hvsubvali 28797 . . 3 (𝐶 𝐷) = (𝐶 + (-1 · 𝐷))
2523, 24oveq12i 7168 . 2 ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 + (-1 · 𝐵)) − (𝐶 + (-1 · 𝐷)))
261, 5hvsubvali 28797 . . 3 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
273, 7hvsubvali 28797 . . 3 (𝐵 𝐷) = (𝐵 + (-1 · 𝐷))
2826, 27oveq12i 7168 . 2 ((𝐴 𝐶) − (𝐵 𝐷)) = ((𝐴 + (-1 · 𝐶)) − (𝐵 + (-1 · 𝐷)))
2922, 25, 283eqtr4i 2854 1 ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  (class class class)co 7156  1c1 10538  -cneg 10871  chba 28696   + cva 28697   · csm 28698   cmv 28702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-hfvadd 28777  ax-hvcom 28778  ax-hvass 28779  ax-hfvmul 28782  ax-hvdistr1 28785
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-hvsub 28748
This theorem is referenced by:  hvsubsub4  28837  pjsslem  29456
  Copyright terms: Public domain W3C validator