HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvaddcli Structured version   Visualization version   GIF version

Theorem hvaddcli 27736
Description: Closure of vector addition. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvaddcl.1 𝐴 ∈ ℋ
hvaddcl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvaddcli (𝐴 + 𝐵) ∈ ℋ

Proof of Theorem hvaddcli
StepHypRef Expression
1 hvaddcl.1 . 2 𝐴 ∈ ℋ
2 hvaddcl.2 . 2 𝐵 ∈ ℋ
3 hvaddcl 27730 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
41, 2, 3mp2an 707 1 (𝐴 + 𝐵) ∈ ℋ
Colors of variables: wff setvar class
Syntax hints:  wcel 1987  (class class class)co 6607  chil 27637   + cva 27638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869  ax-hfvadd 27718
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-fv 5857  df-ov 6610
This theorem is referenced by:  hvsubsub4i  27777  hvsubaddi  27784  normlem0  27827  normlem8  27835  norm-ii-i  27855  normpythi  27860  norm3difi  27865  normpari  27872  normpar2i  27874  polidi  27876  nonbooli  28371  lnopunilem1  28730  lnophmlem2  28737
  Copyright terms: Public domain W3C validator