MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaiun Structured version   Visualization version   GIF version

Theorem imaiun 7004
Description: The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
imaiun (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem imaiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3249 . . . 4 (∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
2 vex 3497 . . . . . 6 𝑦 ∈ V
32elima3 5936 . . . . 5 (𝑦 ∈ (𝐴𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
43rexbii 3247 . . . 4 (∃𝑥𝐵 𝑦 ∈ (𝐴𝐶) ↔ ∃𝑥𝐵𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
5 eliun 4923 . . . . . . 7 (𝑧 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑧𝐶)
65anbi1i 625 . . . . . 6 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
7 r19.41v 3347 . . . . . 6 (∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ (∃𝑥𝐵 𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
86, 7bitr4i 280 . . . . 5 ((𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
98exbii 1848 . . . 4 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑧𝑥𝐵 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
101, 4, 93bitr4ri 306 . . 3 (∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
112elima3 5936 . . 3 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ ∃𝑧(𝑧 𝑥𝐵 𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐴))
12 eliun 4923 . . 3 (𝑦 𝑥𝐵 (𝐴𝐶) ↔ ∃𝑥𝐵 𝑦 ∈ (𝐴𝐶))
1310, 11, 123bitr4i 305 . 2 (𝑦 ∈ (𝐴 𝑥𝐵 𝐶) ↔ 𝑦 𝑥𝐵 (𝐴𝐶))
1413eqriv 2818 1 (𝐴 𝑥𝐵 𝐶) = 𝑥𝐵 (𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3139  cop 4573   ciun 4919  cima 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-iun 4921  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568
This theorem is referenced by:  imauni  7005  uniqs  8357  hsmexlem4  9851  hsmexlem5  9852  xkococnlem  22267  ismbf3d  24255  mbfimaopnlem  24256  i1fima  24279  i1fd  24282  itg1addlem5  24301  limciun  24492  sibfof  31598  eulerpartlemgh  31636  poimirlem30  34937  itg2addnclem2  34959  ftc1anclem6  34987  uniqsALTV  35601  smfresal  43083
  Copyright terms: Public domain W3C validator