Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf Structured version   Visualization version   GIF version

Theorem indf 31274
Description: An indicator function as a function with domain and codomain. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indf ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})

Proof of Theorem indf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 31272 . 2 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
2 1re 10641 . . . . 5 1 ∈ ℝ
3 0re 10643 . . . . 5 0 ∈ ℝ
4 ifpr 4629 . . . . 5 ((1 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {1, 0})
52, 3, 4mp2an 690 . . . 4 if(𝑥𝐴, 1, 0) ∈ {1, 0}
6 prcom 4668 . . . 4 {1, 0} = {0, 1}
75, 6eleqtri 2911 . . 3 if(𝑥𝐴, 1, 0) ∈ {0, 1}
87a1i 11 . 2 (((𝑂𝑉𝐴𝑂) ∧ 𝑥𝑂) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
91, 8fmpt3d 6880 1 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wss 3936  ifcif 4467  {cpr 4569  wf 6351  cfv 6355  cr 10536  0cc0 10537  1c1 10538  𝟭cind 31269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-i2m1 10605  ax-1ne0 10606  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-ind 31270
This theorem is referenced by:  indpi1  31279  indsum  31280  indsumin  31281  prodindf  31282  indpreima  31284  indf1ofs  31285  breprexpnat  31905  circlemethnat  31912
  Copyright terms: Public domain W3C validator