Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   GIF version

Theorem indsumin 31281
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1 (𝜑𝑂𝑉)
indsumin.2 (𝜑𝐴 ∈ Fin)
indsumin.3 (𝜑𝐴𝑂)
indsumin.4 (𝜑𝐵𝑂)
indsumin.5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
indsumin (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 30278 . . . 4 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
21a1i 11 . . 3 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
3 inundif 4427 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43eqcomi 2830 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
54a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
6 indsumin.2 . . 3 (𝜑𝐴 ∈ Fin)
7 pr01ssre 30540 . . . . . 6 {0, 1} ⊆ ℝ
8 ax-resscn 10594 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3976 . . . . 5 {0, 1} ⊆ ℂ
10 indsumin.1 . . . . . . . 8 (𝜑𝑂𝑉)
11 indsumin.4 . . . . . . . 8 (𝜑𝐵𝑂)
12 indf 31274 . . . . . . . 8 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1310, 11, 12syl2anc 586 . . . . . . 7 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1413adantr 483 . . . . . 6 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
15 indsumin.3 . . . . . . 7 (𝜑𝐴𝑂)
1615sselda 3967 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑂)
1714, 16ffvelrnd 6852 . . . . 5 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ {0, 1})
189, 17sseldi 3965 . . . 4 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ ℂ)
19 indsumin.5 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2018, 19mulcld 10661 . . 3 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) ∈ ℂ)
212, 5, 6, 20fsumsplit 15097 . 2 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)))
2210adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
2311adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
24 inss2 4206 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
2524a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
2625sselda 3967 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐵)
27 ind1 31276 . . . . . . 7 ((𝑂𝑉𝐵𝑂𝑘𝐵) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2822, 23, 26, 27syl3anc 1367 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2928oveq1d 7171 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (1 · 𝐶))
30 inss1 4205 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
3130a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3231sselda 3967 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
3332, 19syldan 593 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
3433mulid2d 10659 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → (1 · 𝐶) = 𝐶)
3529, 34eqtrd 2856 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 𝐶)
3635sumeq2dv 15060 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
3710adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
3811adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
3915ssdifd 4117 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (𝑂𝐵))
4039sselda 3967 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘 ∈ (𝑂𝐵))
41 ind0 31277 . . . . . . . 8 ((𝑂𝑉𝐵𝑂𝑘 ∈ (𝑂𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4237, 38, 40, 41syl3anc 1367 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4342oveq1d 7171 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (0 · 𝐶))
44 difssd 4109 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
4544sselda 3967 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
4645, 19syldan 593 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
4746mul02d 10838 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (0 · 𝐶) = 0)
4843, 47eqtrd 2856 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
4948sumeq2dv 15060 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)0)
50 diffi 8750 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
516, 50syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
52 sumz 15079 . . . . . 6 (((𝐴𝐵) ⊆ (ℤ‘0) ∨ (𝐴𝐵) ∈ Fin) → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5352olcs 872 . . . . 5 ((𝐴𝐵) ∈ Fin → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5451, 53syl 17 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5549, 54eqtrd 2856 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
5636, 55oveq12d 7174 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)) = (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0))
57 infi 8742 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
586, 57syl 17 . . . 4 (𝜑 → (𝐴𝐵) ∈ Fin)
5958, 33fsumcl 15090 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
6059addid1d 10840 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
6121, 56, 603eqtrd 2860 1 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {cpr 4569  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cuz 12244  Σcsu 15042  𝟭cind 31269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ind 31270
This theorem is referenced by:  breprexpnat  31905
  Copyright terms: Public domain W3C validator