![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latmlem2 | Structured version Visualization version GIF version |
Description: Add meet to both sides of a lattice ordering. (sslin 3982 analog.) (Contributed by NM, 10-Nov-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latmlem2 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∧ 𝑋) ≤ (𝑍 ∧ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmlem1 17282 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍))) |
5 | 1, 3 | latmcom 17276 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 ∧ 𝑍) = (𝑍 ∧ 𝑋)) |
6 | 5 | 3adant3r2 1199 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∧ 𝑍) = (𝑍 ∧ 𝑋)) |
7 | 1, 3 | latmcom 17276 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∧ 𝑍) = (𝑍 ∧ 𝑌)) |
8 | 7 | 3adant3r1 1198 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∧ 𝑍) = (𝑍 ∧ 𝑌)) |
9 | 6, 8 | breq12d 4817 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ∧ 𝑍) ≤ (𝑌 ∧ 𝑍) ↔ (𝑍 ∧ 𝑋) ≤ (𝑍 ∧ 𝑌))) |
10 | 4, 9 | sylibd 229 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∧ 𝑋) ≤ (𝑍 ∧ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 meetcmee 17146 Latclat 17246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-poset 17147 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-lat 17247 |
This theorem is referenced by: latmlem12 17284 cmtbr4N 35045 cvrat4 35232 dalawlem3 35662 dalawlem6 35665 cdlemk10 36633 dia2dimlem2 36856 dia2dimlem3 36857 |
Copyright terms: Public domain | W3C validator |