MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfgrn1cycl Structured version   Visualization version   GIF version

Theorem lfgrn1cycl 26566
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 2-Feb-2021.)
Hypotheses
Ref Expression
lfgrn1cycl.v 𝑉 = (Vtx‘𝐺)
lfgrn1cycl.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfgrn1cycl (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (#‘𝐹) ≠ 1))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥)

Proof of Theorem lfgrn1cycl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cyclprop 26557 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))))
2 cycliswlk 26562 . . 3 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 lfgrn1cycl.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
4 lfgrn1cycl.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
53, 4lfgrwlknloop 26455 . . . . . . 7 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
6 1nn 10975 . . . . . . . . . . . . . 14 1 ∈ ℕ
7 eleq1 2686 . . . . . . . . . . . . . 14 ((#‘𝐹) = 1 → ((#‘𝐹) ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 248 . . . . . . . . . . . . 13 ((#‘𝐹) = 1 → (#‘𝐹) ∈ ℕ)
9 lbfzo0 12448 . . . . . . . . . . . . 13 (0 ∈ (0..^(#‘𝐹)) ↔ (#‘𝐹) ∈ ℕ)
108, 9sylibr 224 . . . . . . . . . . . 12 ((#‘𝐹) = 1 → 0 ∈ (0..^(#‘𝐹)))
11 fveq2 6148 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
12 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (𝑘 + 1) = (0 + 1))
13 0p1e1 11076 . . . . . . . . . . . . . . . 16 (0 + 1) = 1
1412, 13syl6eq 2671 . . . . . . . . . . . . . . 15 (𝑘 = 0 → (𝑘 + 1) = 1)
1514fveq2d 6152 . . . . . . . . . . . . . 14 (𝑘 = 0 → (𝑃‘(𝑘 + 1)) = (𝑃‘1))
1611, 15neeq12d 2851 . . . . . . . . . . . . 13 (𝑘 = 0 → ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
1716rspcv 3291 . . . . . . . . . . . 12 (0 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1810, 17syl 17 . . . . . . . . . . 11 ((#‘𝐹) = 1 → (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘0) ≠ (𝑃‘1)))
1918impcom 446 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘1))
20 fveq2 6148 . . . . . . . . . . . 12 ((#‘𝐹) = 1 → (𝑃‘(#‘𝐹)) = (𝑃‘1))
2120neeq2d 2850 . . . . . . . . . . 11 ((#‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2221adantl 482 . . . . . . . . . 10 ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → ((𝑃‘0) ≠ (𝑃‘(#‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2319, 22mpbird 247 . . . . . . . . 9 ((∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ (#‘𝐹) = 1) → (𝑃‘0) ≠ (𝑃‘(#‘𝐹)))
2423ex 450 . . . . . . . 8 (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((#‘𝐹) = 1 → (𝑃‘0) ≠ (𝑃‘(#‘𝐹))))
2524necon2d 2813 . . . . . . 7 (∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1))
265, 25syl 17 . . . . . 6 ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1))
2726ex 450 . . . . 5 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (#‘𝐹) ≠ 1)))
2827com13 88 . . . 4 ((𝑃‘0) = (𝑃‘(#‘𝐹)) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1)))
2928adantl 482 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(#‘𝐹))) → (𝐹(Walks‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1)))
301, 2, 29sylc 65 . 2 (𝐹(Cycles‘𝐺)𝑃 → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (#‘𝐹) ≠ 1))
3130com12 32 1 (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → (𝐹(Cycles‘𝐺)𝑃 → (#‘𝐹) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  𝒫 cpw 4130   class class class wbr 4613  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cle 10019  cn 10964  2c2 11014  ..^cfzo 12406  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  Walkscwlks 26362  Pathscpths 26477  Cyclesccycls 26549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1012  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-hash 13058  df-word 13238  df-wlks 26365  df-trls 26458  df-pths 26481  df-cycls 26551
This theorem is referenced by:  umgrn1cycl  26568
  Copyright terms: Public domain W3C validator