Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupvaluzmpt Structured version   Visualization version   GIF version

Theorem limsupvaluzmpt 42072
Description: The superior limit, when the domain of the function is a set of upper integers (the first condition is needed, otherwise the l.h.s. would be -∞ and the r.h.s. would be +∞). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupvaluzmpt.j 𝑗𝜑
limsupvaluzmpt.m (𝜑𝑀 ∈ ℤ)
limsupvaluzmpt.z 𝑍 = (ℤ𝑀)
limsupvaluzmpt.b ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
limsupvaluzmpt (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Distinct variable groups:   𝐵,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem limsupvaluzmpt
StepHypRef Expression
1 limsupvaluzmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
2 limsupvaluzmpt.z . . 3 𝑍 = (ℤ𝑀)
3 limsupvaluzmpt.j . . . 4 𝑗𝜑
4 limsupvaluzmpt.b . . . 4 ((𝜑𝑗𝑍) → 𝐵 ∈ ℝ*)
53, 4fmptd2f 41579 . . 3 (𝜑 → (𝑗𝑍𝐵):𝑍⟶ℝ*)
61, 2, 5limsupvaluz 42063 . 2 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ))
72uzssd3 41774 . . . . . . . . 9 (𝑘𝑍 → (ℤ𝑘) ⊆ 𝑍)
87resmptd 5905 . . . . . . . 8 (𝑘𝑍 → ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
98rneqd 5805 . . . . . . 7 (𝑘𝑍 → ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)) = ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵))
109supeq1d 8907 . . . . . 6 (𝑘𝑍 → sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < ) = sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1110mpteq2ia 5154 . . . . 5 (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < ))
1211a1i 11 . . . 4 (𝜑 → (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1312rneqd 5805 . . 3 (𝜑 → ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )) = ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )))
1413infeq1d 8938 . 2 (𝜑 → inf(ran (𝑘𝑍 ↦ sup(ran ((𝑗𝑍𝐵) ↾ (ℤ𝑘)), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
156, 14eqtrd 2855 1 (𝜑 → (lim sup‘(𝑗𝑍𝐵)) = inf(ran (𝑘𝑍 ↦ sup(ran (𝑗 ∈ (ℤ𝑘) ↦ 𝐵), ℝ*, < )), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wnf 1783  wcel 2113  cmpt 5143  ran crn 5553  cres 5554  cfv 6352  supcsup 8901  infcinf 8902  *cxr 10671   < clt 10672  cz 11979  cuz 12241  lim supclsp 14823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611  ax-pre-sup 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8903  df-inf 8904  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-n0 11896  df-z 11980  df-uz 12242  df-ico 12742  df-fl 13160  df-limsup 14824
This theorem is referenced by:  smflimsuplem4  43171
  Copyright terms: Public domain W3C validator