Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincvalsc0 Structured version   Visualization version   GIF version

Theorem lincvalsc0 41981
Description: The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
Assertion
Ref Expression
lincvalsc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)   𝑍(𝑥)

Proof of Theorem lincvalsc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑀 ∈ LMod)
2 lincvalsc0.s . . . . . . . 8 𝑆 = (Scalar‘𝑀)
32eqcomi 2630 . . . . . . . . 9 (Scalar‘𝑀) = 𝑆
43fveq2i 6192 . . . . . . . 8 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
5 lincvalsc0.0 . . . . . . . 8 0 = (0g𝑆)
62, 4, 5lmod0cl 18883 . . . . . . 7 (𝑀 ∈ LMod → 0 ∈ (Base‘(Scalar‘𝑀)))
76adantr 481 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ (Base‘(Scalar‘𝑀)))
87adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0 ∈ (Base‘(Scalar‘𝑀)))
9 lincvalsc0.f . . . . 5 𝐹 = (𝑥𝑉0 )
108, 9fmptd 6383 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
11 fvexd 6201 . . . . 5 (𝑀 ∈ LMod → (Base‘(Scalar‘𝑀)) ∈ V)
12 elmapg 7867 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1311, 12sylan 488 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
1410, 13mpbird 247 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
15 lincvalsc0.b . . . . . . 7 𝐵 = (Base‘𝑀)
1615pweqi 4160 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
1716eleq2i 2692 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1817biimpi 206 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
1918adantl 482 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
20 lincval 41969 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
211, 14, 19, 20syl3anc 1325 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
22 simpr 477 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝑉)
23 fvex 6199 . . . . . . . 8 (0g𝑆) ∈ V
245, 23eqeltri 2696 . . . . . . 7 0 ∈ V
25 eqidd 2622 . . . . . . . 8 (𝑥 = 𝑣0 = 0 )
2625, 9fvmptg 6278 . . . . . . 7 ((𝑣𝑉0 ∈ V) → (𝐹𝑣) = 0 )
2722, 24, 26sylancl 694 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → (𝐹𝑣) = 0 )
2827oveq1d 6662 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
291adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
30 elelpwi 4169 . . . . . . . . 9 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
3130expcom 451 . . . . . . . 8 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
3231adantl 482 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉𝑣𝐵))
3332imp 445 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 𝑣𝐵)
34 eqid 2621 . . . . . . 7 ( ·𝑠𝑀) = ( ·𝑠𝑀)
35 lincvalsc0.z . . . . . . 7 𝑍 = (0g𝑀)
3615, 2, 34, 5, 35lmod0vs 18890 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3729, 33, 36syl2anc 693 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ( 0 ( ·𝑠𝑀)𝑣) = 𝑍)
3828, 37eqtrd 2655 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = 𝑍)
3938mpteq2dva 4742 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉𝑍))
4039oveq2d 6663 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg (𝑣𝑉𝑍)))
41 lmodgrp 18864 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
42 grpmnd 17423 . . . 4 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
4341, 42syl 17 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
4435gsumz 17368 . . 3 ((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4543, 44sylan 488 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 Σg (𝑣𝑉𝑍)) = 𝑍)
4621, 40, 453eqtrd 2659 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  𝒫 cpw 4156  cmpt 4727  wf 5882  cfv 5886  (class class class)co 6647  𝑚 cmap 7854  Basecbs 15851  Scalarcsca 15938   ·𝑠 cvsca 15939  0gc0g 16094   Σg cgsu 16095  Mndcmnd 17288  Grpcgrp 17416  LModclmod 18857   linC clinc 41964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-map 7856  df-seq 12797  df-0g 16096  df-gsum 16097  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-ring 18543  df-lmod 18859  df-linc 41966
This theorem is referenced by:  lcoc0  41982
  Copyright terms: Public domain W3C validator