MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmod0vs Structured version   Visualization version   GIF version

Theorem lmod0vs 19667
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 28787 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmod0vs.v 𝑉 = (Base‘𝑊)
lmod0vs.f 𝐹 = (Scalar‘𝑊)
lmod0vs.s · = ( ·𝑠𝑊)
lmod0vs.o 𝑂 = (0g𝐹)
lmod0vs.z 0 = (0g𝑊)
Assertion
Ref Expression
lmod0vs ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )

Proof of Theorem lmod0vs
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmod0vs.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32lmodring 19642 . . . . . . 7 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
43adantr 483 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Ring)
5 eqid 2821 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
6 lmod0vs.o . . . . . . 7 𝑂 = (0g𝐹)
75, 6ring0cl 19319 . . . . . 6 (𝐹 ∈ Ring → 𝑂 ∈ (Base‘𝐹))
84, 7syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑂 ∈ (Base‘𝐹))
9 simpr 487 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
10 lmod0vs.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2821 . . . . . 6 (+g𝑊) = (+g𝑊)
12 lmod0vs.s . . . . . 6 · = ( ·𝑠𝑊)
13 eqid 2821 . . . . . 6 (+g𝐹) = (+g𝐹)
1410, 11, 2, 12, 5, 13lmodvsdir 19658 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑂 ∈ (Base‘𝐹) ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉)) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
151, 8, 8, 9, 14syl13anc 1368 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)))
16 ringgrp 19302 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
174, 16syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝐹 ∈ Grp)
185, 13, 6grplid 18133 . . . . . 6 ((𝐹 ∈ Grp ∧ 𝑂 ∈ (Base‘𝐹)) → (𝑂(+g𝐹)𝑂) = 𝑂)
1917, 8, 18syl2anc 586 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂(+g𝐹)𝑂) = 𝑂)
2019oveq1d 7171 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂(+g𝐹)𝑂) · 𝑋) = (𝑂 · 𝑋))
2115, 20eqtr3d 2858 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋))
2210, 2, 12, 5lmodvscl 19651 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑂 ∈ (Base‘𝐹) ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
231, 8, 9, 22syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) ∈ 𝑉)
24 lmod0vs.z . . . . 5 0 = (0g𝑊)
2510, 11, 24lmod0vid 19666 . . . 4 ((𝑊 ∈ LMod ∧ (𝑂 · 𝑋) ∈ 𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2623, 25syldan 593 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (((𝑂 · 𝑋)(+g𝑊)(𝑂 · 𝑋)) = (𝑂 · 𝑋) ↔ 0 = (𝑂 · 𝑋)))
2721, 26mpbid 234 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 0 = (𝑂 · 𝑋))
2827eqcomd 2827 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Grpcgrp 18103  Ringcrg 19297  LModclmod 19634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-riota 7114  df-ov 7159  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-ring 19299  df-lmod 19636
This theorem is referenced by:  lmodvs0  19668  lmodvsmmulgdi  19669  lcomfsupp  19674  lmodvneg1  19677  mptscmfsupp0  19699  lvecvs0or  19880  lssvs0or  19882  lspsneleq  19887  lspdisj  19897  lspfixed  19900  lspexch  19901  lspsolvlem  19914  lspsolv  19915  ascl0  20113  mplcoe1  20246  mplbas2  20251  ply10s0  20424  ply1scl0  20458  gsummoncoe1  20472  uvcresum  20937  frlmsslsp  20940  frlmup1  20942  frlmup2  20943  pmatcollpwscmatlem1  21397  idpm2idmp  21409  mp2pm2mplem4  21417  pm2mpmhmlem1  21426  monmat2matmon  21432  cpmidpmatlem3  21480  clm0vs  23699  plypf1  24802  lmodslmd  30832  lbsdiflsp0  31022  fedgmullem2  31026  lshpkrlem1  36261  ldual0vs  36311  lclkrlem1  38657  lcd0vs  38766  baerlem3lem1  38858  baerlem5blem1  38860  hdmap14lem2a  39018  hdmap14lem4a  39022  hdmap14lem6  39024  hgmapval0  39043  prjspersym  39277  prjspreln0  39279  lmod0rng  44159  scmsuppss  44440  lmodvsmdi  44450  ply1mulgsumlem4  44463  lincval1  44494  lincvalsc0  44496  linc0scn0  44498  linc1  44500  ldepsprlem  44547
  Copyright terms: Public domain W3C validator