MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspval Structured version   Visualization version   GIF version

Theorem lspval 19023
Description: The span of a set of vectors (in a left module). (spanval 28320 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspval ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Distinct variable groups:   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝑁(𝑡)   𝑊(𝑡)

Proof of Theorem lspval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lspval.v . . . . 5 𝑉 = (Base‘𝑊)
2 lspval.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . . . 5 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 19021 . . . 4 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
54fveq1d 6231 . . 3 (𝑊 ∈ LMod → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
65adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈))
7 simpr 476 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈𝑉)
8 fvex 6239 . . . . . 6 (Base‘𝑊) ∈ V
91, 8eqeltri 2726 . . . . 5 𝑉 ∈ V
109elpw2 4858 . . . 4 (𝑈 ∈ 𝒫 𝑉𝑈𝑉)
117, 10sylibr 224 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ∈ 𝒫 𝑉)
121, 2lss1 18987 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
13 sseq2 3660 . . . . . 6 (𝑡 = 𝑉 → (𝑈𝑡𝑈𝑉))
1413rspcev 3340 . . . . 5 ((𝑉𝑆𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
1512, 14sylan 487 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ∃𝑡𝑆 𝑈𝑡)
16 intexrab 4853 . . . 4 (∃𝑡𝑆 𝑈𝑡 {𝑡𝑆𝑈𝑡} ∈ V)
1715, 16sylib 208 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → {𝑡𝑆𝑈𝑡} ∈ V)
18 sseq1 3659 . . . . . 6 (𝑠 = 𝑈 → (𝑠𝑡𝑈𝑡))
1918rabbidv 3220 . . . . 5 (𝑠 = 𝑈 → {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
2019inteqd 4512 . . . 4 (𝑠 = 𝑈 {𝑡𝑆𝑠𝑡} = {𝑡𝑆𝑈𝑡})
21 eqid 2651 . . . 4 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})
2220, 21fvmptg 6319 . . 3 ((𝑈 ∈ 𝒫 𝑉 {𝑡𝑆𝑈𝑡} ∈ V) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
2311, 17, 22syl2anc 694 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡})‘𝑈) = {𝑡𝑆𝑈𝑡})
246, 23eqtrd 2685 1 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁𝑈) = {𝑡𝑆𝑈𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  𝒫 cpw 4191   cint 4507  cmpt 4762  cfv 5926  Basecbs 15904  LModclmod 18911  LSubSpclss 18980  LSpanclspn 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-lmod 18913  df-lss 18981  df-lsp 19020
This theorem is referenced by:  lspid  19030  lspss  19032  lspssid  19033  dochspss  36984  lcosslsp  42552
  Copyright terms: Public domain W3C validator