Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosslsp Structured version   Visualization version   GIF version

Theorem lcosslsp 41489
Description: Lemma for lspeqlco 41490. (Contributed by AV, 20-Apr-2019.)
Hypothesis
Ref Expression
lspeqvlco.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
lcosslsp ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))

Proof of Theorem lcosslsp
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellcoellss 41486 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)
213exp 1261 . . . . . . . . 9 (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
32ad2antrr 761 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
43imp 445 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠))
5 elequ1 1999 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑠𝑥𝑠))
65rspcv 3296 . . . . . . . 8 (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
76ad2antlr 762 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
84, 7syld 47 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠𝑥𝑠))
98ralrimiva 2965 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
10 vex 3194 . . . . . 6 𝑥 ∈ V
1110elintrab 4458 . . . . 5 (𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
129, 11sylibr 224 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
13 simpll 789 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod)
14 elpwi 4145 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
1514ad2antlr 762 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉𝐵)
16 lspeqvlco.b . . . . . 6 𝐵 = (Base‘𝑀)
17 eqid 2626 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
18 eqid 2626 . . . . . 6 (LSpan‘𝑀) = (LSpan‘𝑀)
1916, 17, 18lspval 18889 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2013, 15, 19syl2anc 692 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2112, 20eleqtrrd 2707 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))
2221ex 450 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)))
2322ssrdv 3594 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  {crab 2916  wss 3560  𝒫 cpw 4135   cint 4445  cfv 5850  (class class class)co 6605  Basecbs 15776  LModclmod 18779  LSubSpclss 18846  LSpanclspn 18885   LinCo clinco 41456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-0g 16018  df-gsum 16019  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-grp 17341  df-minusg 17342  df-sbg 17343  df-subg 17507  df-cntz 17666  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-lmod 18781  df-lss 18847  df-lsp 18886  df-linc 41457  df-lco 41458
This theorem is referenced by:  lspeqlco  41490
  Copyright terms: Public domain W3C validator