![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssid | Structured version Visualization version GIF version |
Description: A set of vectors is a subset of its span. (spanss2 28332 analog.) (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspss.v | ⊢ 𝑉 = (Base‘𝑊) |
lspss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspssid | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintub 4527 | . 2 ⊢ 𝑈 ⊆ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡} | |
2 | lspss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2651 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | lspss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspval 19023 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝑁‘𝑈) = ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑈 ⊆ 𝑡}) |
6 | 1, 5 | syl5sseqr 3687 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 ⊆ wss 3607 ∩ cint 4507 ‘cfv 5926 Basecbs 15904 LModclmod 18911 LSubSpclss 18980 LSpanclspn 19019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-lmod 18913 df-lss 18981 df-lsp 19020 |
This theorem is referenced by: lspun 19035 lspsnid 19041 lsslsp 19063 lmhmlsp 19097 lsmsp 19134 lsmssspx 19136 lspvadd 19144 lspsolvlem 19190 lspsolv 19191 lsppratlem3 19197 lsppratlem4 19198 islbs3 19203 lbsextlem2 19207 lbsextlem4 19209 rspssid 19271 ocvlsp 20068 obselocv 20120 frlmsslsp 20183 lindff1 20207 islinds3 20221 lindsenlbs 33534 dochocsp 36985 djhunssN 37015 islssfg2 37958 |
Copyright terms: Public domain | W3C validator |