MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meet0 Structured version   Visualization version   GIF version

Theorem meet0 17747
Description: Lemma for odujoin 17752. (Contributed by Stefan O'Rear, 29-Jan-2015.) TODO (df-riota 7114 update): This proof increased from 152 bytes to 547 bytes after the df-riota 7114 change. Any way to shorten it? join0 17748 also.
Assertion
Ref Expression
meet0 (meet‘∅) = ∅

Proof of Theorem meet0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5211 . . 3 ∅ ∈ V
2 eqid 2821 . . . 4 (glb‘∅) = (glb‘∅)
3 eqid 2821 . . . 4 (meet‘∅) = (meet‘∅)
42, 3meetfval 17625 . . 3 (∅ ∈ V → (meet‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧})
51, 4ax-mp 5 . 2 (meet‘∅) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧}
6 df-oprab 7160 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)}
7 br0 5115 . . . . . . . . 9 ¬ {𝑥, 𝑦}∅𝑧
8 base0 16536 . . . . . . . . . . . . 13 ∅ = (Base‘∅)
9 eqid 2821 . . . . . . . . . . . . 13 (le‘∅) = (le‘∅)
10 biid 263 . . . . . . . . . . . . 13 ((∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)) ↔ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))
11 id 22 . . . . . . . . . . . . 13 (∅ ∈ V → ∅ ∈ V)
128, 9, 2, 10, 11glbfval 17601 . . . . . . . . . . . 12 (∅ ∈ V → (glb‘∅) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}))
131, 12ax-mp 5 . . . . . . . . . . 11 (glb‘∅) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))})
14 reu0 4318 . . . . . . . . . . . . . 14 ¬ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))
1514abf 4356 . . . . . . . . . . . . 13 {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))} = ∅
1615reseq2i 5850 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}) = ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ ∅)
17 res0 5857 . . . . . . . . . . . 12 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ ∅) = ∅
1816, 17eqtri 2844 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ∅ ↦ (𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦)))) ↾ {𝑥 ∣ ∃!𝑦 ∈ ∅ (∀𝑧𝑥 𝑦(le‘∅)𝑧 ∧ ∀𝑤 ∈ ∅ (∀𝑧𝑥 𝑤(le‘∅)𝑧𝑤(le‘∅)𝑦))}) = ∅
1913, 18eqtri 2844 . . . . . . . . . 10 (glb‘∅) = ∅
2019breqi 5072 . . . . . . . . 9 ({𝑥, 𝑦} (glb‘∅)𝑧 ↔ {𝑥, 𝑦}∅𝑧)
217, 20mtbir 325 . . . . . . . 8 ¬ {𝑥, 𝑦} (glb‘∅)𝑧
2221intnan 489 . . . . . . 7 ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2322nex 1801 . . . . . 6 ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2423nex 1801 . . . . 5 ¬ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2524nex 1801 . . . 4 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)
2625abf 4356 . . 3 {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ {𝑥, 𝑦} (glb‘∅)𝑧)} = ∅
276, 26eqtri 2844 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘∅)𝑧} = ∅
285, 27eqtri 2844 1 (meet‘∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  ∃!wreu 3140  Vcvv 3494  c0 4291  𝒫 cpw 4539  {cpr 4569  cop 4573   class class class wbr 5066  cmpt 5146  cres 5557  cfv 6355  crio 7113  {coprab 7157  lecple 16572  glbcglb 17553  meetcmee 17555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-oprab 7160  df-slot 16487  df-base 16489  df-glb 17585  df-meet 17587
This theorem is referenced by:  odumeet  17750
  Copyright terms: Public domain W3C validator