Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2lem Structured version   Visualization version   GIF version

Theorem neibastop2lem 32480
Description: Lemma for neibastop2 32481. (Contributed by Jeff Hankins, 12-Sep-2009.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
neibastop2.p (𝜑𝑃𝑋)
neibastop2.n (𝜑𝑁𝑋)
neibastop2.f (𝜑𝑈 ∈ (𝐹𝑃))
neibastop2.u (𝜑𝑈𝑁)
neibastop2.g 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
neibastop2.s 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
Assertion
Ref Expression
neibastop2lem (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Distinct variable groups:   𝑡,𝑓,𝑣,𝑦,𝑧,𝐺   𝑣,𝑢,𝑥,𝑦,𝑧,𝐽   𝑓,𝑜,𝑢,𝑤,𝑥,𝑃,𝑡,𝑣,𝑦,𝑧   𝑓,𝑁,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑜,𝑡,𝑢,𝑣,𝑥,𝑦   𝑈,𝑓,𝑥,𝑦,𝑧   𝑓,𝑎,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑎,𝑓,𝑜,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑢,𝑎)   𝑃(𝑎)   𝑆(𝑧,𝑤,𝑎)   𝑈(𝑤,𝑣,𝑢,𝑡,𝑜,𝑎)   𝐺(𝑥,𝑤,𝑢,𝑜,𝑎)   𝐽(𝑤,𝑡,𝑓,𝑜,𝑎)   𝑁(𝑎)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,𝑜,𝑎)

Proof of Theorem neibastop2lem
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop2.s . . . . 5 𝑆 = {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
2 ssrab2 3720 . . . . 5 {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑋
31, 2eqsstri 3668 . . . 4 𝑆𝑋
4 neibastop1.1 . . . . 5 (𝜑𝑋𝑉)
5 elpw2g 4857 . . . . 5 (𝑋𝑉 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
64, 5syl 17 . . . 4 (𝜑 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
73, 6mpbiri 248 . . 3 (𝜑𝑆 ∈ 𝒫 𝑋)
8 fveq2 6229 . . . . . . . . 9 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
98ineq1d 3846 . . . . . . . 8 (𝑦 = 𝑥 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑥) ∩ 𝒫 𝑓))
109neeq1d 2882 . . . . . . 7 (𝑦 = 𝑥 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1110rexbidv 3081 . . . . . 6 (𝑦 = 𝑥 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
1211, 1elrab2 3399 . . . . 5 (𝑥𝑆 ↔ (𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅))
13 frfnom 7575 . . . . . . . . . 10 (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω
14 neibastop2.g . . . . . . . . . . 11 𝐺 = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)
1514fneq1i 6023 . . . . . . . . . 10 (𝐺 Fn ω ↔ (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω) Fn ω)
1613, 15mpbir 221 . . . . . . . . 9 𝐺 Fn ω
17 fnunirn 6551 . . . . . . . . 9 (𝐺 Fn ω → (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑓 ran 𝐺 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
19 n0 3964 . . . . . . . . . 10 (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
20 inss1 3866 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∩ 𝒫 𝑓) ⊆ (𝐹𝑥)
2120sseli 3632 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → 𝑣 ∈ (𝐹𝑥))
22 neibastop1.6 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2322anassrs 681 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ (𝐹𝑥)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2421, 23sylan2 490 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
2524adantrl 752 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
26 simprl 809 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ (𝐹𝑥))
27 fvssunirn 6255 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑥) ⊆ ran 𝐹
28 neibastop1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
29 frn 6091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}) → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐹 ⊆ (𝒫 𝒫 𝑋 ∖ {∅}))
3130difss2d 3773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran 𝐹 ⊆ 𝒫 𝒫 𝑋)
32 sspwuni 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ran 𝐹 ⊆ 𝒫 𝒫 𝑋 ran 𝐹 ⊆ 𝒫 𝑋)
3331, 32sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 ran 𝐹 ⊆ 𝒫 𝑋)
3433ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐹 ⊆ 𝒫 𝑋)
3527, 34syl5ss 3647 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐹𝑥) ⊆ 𝒫 𝑋)
3635sselda 3636 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡 ∈ 𝒫 𝑋)
3736elpwid 4203 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → 𝑡𝑋)
3837sselda 3636 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → 𝑦𝑋)
3938adantrr 753 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑋)
40 simprlr 820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑓 ∈ (𝐺𝑘))
41 rspe 3032 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝑋𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
4241ad2ant2l 797 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))
43 eliun 4556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧))
44 pweq 4194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 = 𝑓 → 𝒫 𝑧 = 𝒫 𝑓)
4544ineq2d 3847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 = 𝑓 → ((𝐹𝑥) ∩ 𝒫 𝑧) = ((𝐹𝑥) ∩ 𝒫 𝑓))
4645eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 = 𝑓 → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4746rexbidv 3081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑓 → (∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4843, 47syl5bb 272 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑓 → (𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)))
4948rspcev 3340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 ∈ (𝐺𝑘) ∧ ∃𝑥𝑋 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓)) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5040, 42, 49syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
51 eliun 4556 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ↔ ∃𝑧 ∈ (𝐺𝑘)𝑣 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
5250, 51sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
53 simpll 805 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝜑)
54 simprll 819 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑘 ∈ ω)
55 fvssunirn 6255 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺𝑘) ⊆ ran 𝐺
56 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑛 = ∅ → (𝐺𝑛) = (𝐺‘∅))
5714fveq1i 6230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐺‘∅) = ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅)
58 snex 4938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈} ∈ V
59 fr0g 7576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈} ∈ V → ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈})
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑈}) ↾ ω)‘∅) = {𝑈}
6157, 60eqtri 2673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐺‘∅) = {𝑈}
6256, 61syl6eq 2701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = ∅ → (𝐺𝑛) = {𝑈})
6362sseq1d 3665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = ∅ → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ {𝑈} ⊆ 𝒫 𝑈))
64 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
6564sseq1d 3665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺𝑘) ⊆ 𝒫 𝑈))
66 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑛 = suc 𝑘 → (𝐺𝑛) = (𝐺‘suc 𝑘))
6766sseq1d 3665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑛 = suc 𝑘 → ((𝐺𝑛) ⊆ 𝒫 𝑈 ↔ (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
68 neibastop2.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑𝑈 ∈ (𝐹𝑃))
69 pwidg 4206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ 𝒫 𝑈)
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝑈 ∈ 𝒫 𝑈)
7170snssd 4372 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → {𝑈} ⊆ 𝒫 𝑈)
72 simprl 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑘 ∈ ω)
7368adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑈 ∈ (𝐹𝑃))
74 pwexg 4880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑈 ∈ (𝐹𝑃) → 𝒫 𝑈 ∈ V)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝒫 𝑈 ∈ V)
76 inss2 3867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧
77 elpwi 4201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑧 ∈ 𝒫 𝑈𝑧𝑈)
7877adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑧𝑈)
79 sspwb 4947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑧𝑈 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑈)
8078, 79sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝒫 𝑧 ⊆ 𝒫 𝑈)
8176, 80syl5ss 3647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝜑𝑧 ∈ 𝒫 𝑈) → ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8281ralrimivw 2996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝜑𝑧 ∈ 𝒫 𝑈) → ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
83 iunss 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ( 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8482, 83sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝜑𝑧 ∈ 𝒫 𝑈) → 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
8584ralrimiva 2995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝜑 → ∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
86 ssralv 3699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝐺𝑘) ⊆ 𝒫 𝑈 → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8786adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈) → (∀𝑧 ∈ 𝒫 𝑈 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈))
8885, 87mpan9 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
89 iunss 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ( 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈 ↔ ∀𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
9088, 89sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑈)
9175, 90ssexd 4838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V)
92 iuneq1 4566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = 𝑎 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
93 iuneq1 4566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 = (𝐺𝑘) → 𝑧𝑦 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9414, 92, 93frsucmpt2 7580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧) ∈ V) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9572, 91, 94syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
9695, 90eqsstrd 3672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑘 ∈ ω ∧ (𝐺𝑘) ⊆ 𝒫 𝑈)) → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)
9796expr 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑘 ∈ ω) → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈))
9897expcom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 ∈ ω → (𝜑 → ((𝐺𝑘) ⊆ 𝒫 𝑈 → (𝐺‘suc 𝑘) ⊆ 𝒫 𝑈)))
9963, 65, 67, 71, 98finds2 7136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ⊆ 𝒫 𝑈))
100 fvex 6239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝐺𝑛) ∈ V
101100elpw 4197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐺𝑛) ∈ 𝒫 𝒫 𝑈 ↔ (𝐺𝑛) ⊆ 𝒫 𝑈)
10299, 101syl6ibr 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑛 ∈ ω → (𝜑 → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
103102com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (𝑛 ∈ ω → (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
104103ralrimiv 2994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
105 ffnfv 6428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ (𝐺 Fn ω ∧ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈))
10616, 105mpbiran 973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐺:ω⟶𝒫 𝒫 𝑈 ↔ ∀𝑛 ∈ ω (𝐺𝑛) ∈ 𝒫 𝒫 𝑈)
107104, 106sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐺:ω⟶𝒫 𝒫 𝑈)
108 frn 6091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐺:ω⟶𝒫 𝒫 𝑈 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → ran 𝐺 ⊆ 𝒫 𝒫 𝑈)
110 sspwuni 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran 𝐺 ⊆ 𝒫 𝒫 𝑈 ran 𝐺 ⊆ 𝒫 𝑈)
111109, 110sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 ran 𝐺 ⊆ 𝒫 𝑈)
112111ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ran 𝐺 ⊆ 𝒫 𝑈)
11355, 112syl5ss 3647 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺𝑘) ⊆ 𝒫 𝑈)
11453, 54, 113, 95syl12anc 1364 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) = 𝑧 ∈ (𝐺𝑘) 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
11552, 114eleqtrrd 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ∈ (𝐺‘suc 𝑘))
116 peano2 7128 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
11754, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → suc 𝑘 ∈ ω)
118 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 Fn ω ∧ suc 𝑘 ∈ ω) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
11916, 117, 118sylancr 696 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → (𝐺‘suc 𝑘) ∈ ran 𝐺)
120 elunii 4473 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ∈ (𝐺‘suc 𝑘) ∧ (𝐺‘suc 𝑘) ∈ ran 𝐺) → 𝑣 ran 𝐺)
121115, 119, 120syl2anc 694 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → 𝑣 ran 𝐺)
122121ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑣 ran 𝐺)
123 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
124 pweq 4194 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 = 𝑣 → 𝒫 𝑓 = 𝒫 𝑣)
125124ineq2d 3847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑣 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑣))
126125neeq1d 2882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑣 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅))
127126rspcev 3340 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ran 𝐺 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
128122, 123, 127syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)
1291rabeq2i 3228 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑆 ↔ (𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
13039, 128, 129sylanbrc 699 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ (𝑦𝑡 ∧ ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑦𝑆)
131130expr 642 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) ∧ 𝑦𝑡) → (((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → 𝑦𝑆))
132131ralimdva 2991 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ 𝑡 ∈ (𝐹𝑥)) → (∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅ → ∀𝑦𝑡 𝑦𝑆))
133132impr 648 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ∀𝑦𝑡 𝑦𝑆)
134 dfss3 3625 . . . . . . . . . . . . . . . 16 (𝑡𝑆 ↔ ∀𝑦𝑡 𝑦𝑆)
135133, 134sylibr 224 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡𝑆)
136 selpw 4198 . . . . . . . . . . . . . . 15 (𝑡 ∈ 𝒫 𝑆𝑡𝑆)
137135, 136sylibr 224 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → 𝑡 ∈ 𝒫 𝑆)
138 inelcm 4065 . . . . . . . . . . . . . 14 ((𝑡 ∈ (𝐹𝑥) ∧ 𝑡 ∈ 𝒫 𝑆) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
13926, 137, 138syl2anc 694 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) ∧ (𝑡 ∈ (𝐹𝑥) ∧ ∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
14025, 139rexlimddv 3064 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ ((𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘)) ∧ 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓))) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
141140expr 642 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
142141exlimdv 1901 . . . . . . . . . 10 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (∃𝑣 𝑣 ∈ ((𝐹𝑥) ∩ 𝒫 𝑓) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14319, 142syl5bi 232 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ (𝑘 ∈ ω ∧ 𝑓 ∈ (𝐺𝑘))) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
144143rexlimdvaa 3061 . . . . . . . 8 ((𝜑𝑥𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
14518, 144syl5bi 232 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)))
146145rexlimdv 3059 . . . . . 6 ((𝜑𝑥𝑋) → (∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅ → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
147146expimpd 628 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑥) ∩ 𝒫 𝑓) ≠ ∅) → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
14812, 147syl5bi 232 . . . 4 (𝜑 → (𝑥𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
149148ralrimiv 2994 . . 3 (𝜑 → ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅)
150 pweq 4194 . . . . . . 7 (𝑜 = 𝑆 → 𝒫 𝑜 = 𝒫 𝑆)
151150ineq2d 3847 . . . . . 6 (𝑜 = 𝑆 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑆))
152151neeq1d 2882 . . . . 5 (𝑜 = 𝑆 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
153152raleqbi1dv 3176 . . . 4 (𝑜 = 𝑆 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
154 neibastop1.4 . . . 4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
155153, 154elrab2 3399 . . 3 (𝑆𝐽 ↔ (𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑆 ((𝐹𝑥) ∩ 𝒫 𝑆) ≠ ∅))
1567, 149, 155sylanbrc 699 . 2 (𝜑𝑆𝐽)
157 neibastop2.p . . 3 (𝜑𝑃𝑋)
158 snidg 4239 . . . . . 6 (𝑈 ∈ (𝐹𝑃) → 𝑈 ∈ {𝑈})
15968, 158syl 17 . . . . 5 (𝜑𝑈 ∈ {𝑈})
160 peano1 7127 . . . . . . 7 ∅ ∈ ω
161 fnfvelrn 6396 . . . . . . 7 ((𝐺 Fn ω ∧ ∅ ∈ ω) → (𝐺‘∅) ∈ ran 𝐺)
16216, 160, 161mp2an 708 . . . . . 6 (𝐺‘∅) ∈ ran 𝐺
16361, 162eqeltrri 2727 . . . . 5 {𝑈} ∈ ran 𝐺
164 elunii 4473 . . . . 5 ((𝑈 ∈ {𝑈} ∧ {𝑈} ∈ ran 𝐺) → 𝑈 ran 𝐺)
165159, 163, 164sylancl 695 . . . 4 (𝜑𝑈 ran 𝐺)
166 inelcm 4065 . . . . 5 ((𝑈 ∈ (𝐹𝑃) ∧ 𝑈 ∈ 𝒫 𝑈) → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
16768, 70, 166syl2anc 694 . . . 4 (𝜑 → ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅)
168 pweq 4194 . . . . . . 7 (𝑓 = 𝑈 → 𝒫 𝑓 = 𝒫 𝑈)
169168ineq2d 3847 . . . . . 6 (𝑓 = 𝑈 → ((𝐹𝑃) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑈))
170169neeq1d 2882 . . . . 5 (𝑓 = 𝑈 → (((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅))
171170rspcev 3340 . . . 4 ((𝑈 ran 𝐺 ∧ ((𝐹𝑃) ∩ 𝒫 𝑈) ≠ ∅) → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
172165, 167, 171syl2anc 694 . . 3 (𝜑 → ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅)
173 fveq2 6229 . . . . . . 7 (𝑦 = 𝑃 → (𝐹𝑦) = (𝐹𝑃))
174173ineq1d 3846 . . . . . 6 (𝑦 = 𝑃 → ((𝐹𝑦) ∩ 𝒫 𝑓) = ((𝐹𝑃) ∩ 𝒫 𝑓))
175174neeq1d 2882 . . . . 5 (𝑦 = 𝑃 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
176175rexbidv 3081 . . . 4 (𝑦 = 𝑃 → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
177176, 1elrab2 3399 . . 3 (𝑃𝑆 ↔ (𝑃𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑃) ∩ 𝒫 𝑓) ≠ ∅))
178157, 172, 177sylanbrc 699 . 2 (𝜑𝑃𝑆)
179 eluni2 4472 . . . . . . 7 (𝑓 ran 𝐺 ↔ ∃𝑧 ∈ ran 𝐺 𝑓𝑧)
180 eleq2 2719 . . . . . . . . . 10 (𝑧 = (𝐺𝑘) → (𝑓𝑧𝑓 ∈ (𝐺𝑘)))
181180rexrn 6401 . . . . . . . . 9 (𝐺 Fn ω → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘)))
18216, 181ax-mp 5 . . . . . . . 8 (∃𝑧 ∈ ran 𝐺 𝑓𝑧 ↔ ∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘))
183107adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → 𝐺:ω⟶𝒫 𝒫 𝑈)
184183ffvelrnda 6399 . . . . . . . . . . . . . . . 16 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ∈ 𝒫 𝒫 𝑈)
185184elpwid 4203 . . . . . . . . . . . . . . 15 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝐺𝑘) ⊆ 𝒫 𝑈)
186185sselda 3636 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → 𝑓 ∈ 𝒫 𝑈)
187186adantrr 753 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓 ∈ 𝒫 𝑈)
188187elpwid 4203 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑈)
189 neibastop2.u . . . . . . . . . . . . 13 (𝜑𝑈𝑁)
190189ad3antrrr 766 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑈𝑁)
191188, 190sstrd 3646 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑓𝑁)
192 n0 3964 . . . . . . . . . . . . 13 (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓))
193 elin 3829 . . . . . . . . . . . . . . 15 (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) ↔ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))
194 simprrr 822 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ 𝒫 𝑓)
195194elpwid 4203 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣𝑓)
196 simpllr 815 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑋)
197 neibastop1.5 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
198197expr 642 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
199198ralrimiva 2995 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
200199ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → ∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣))
201 simprrl 821 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑣 ∈ (𝐹𝑦))
202 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
203202eleq2d 2716 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑣 ∈ (𝐹𝑥) ↔ 𝑣 ∈ (𝐹𝑦)))
204 elequ1 2037 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
205203, 204imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) ↔ (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
206205rspcv 3336 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → (∀𝑥𝑋 (𝑣 ∈ (𝐹𝑥) → 𝑥𝑣) → (𝑣 ∈ (𝐹𝑦) → 𝑦𝑣)))
207196, 200, 201, 206syl3c 66 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑣)
208195, 207sseldd 3637 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ (𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓))) → 𝑦𝑓)
209208expr 642 . . . . . . . . . . . . . . 15 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → ((𝑣 ∈ (𝐹𝑦) ∧ 𝑣 ∈ 𝒫 𝑓) → 𝑦𝑓))
210193, 209syl5bi 232 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
211210exlimdv 1901 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (∃𝑣 𝑣 ∈ ((𝐹𝑦) ∩ 𝒫 𝑓) → 𝑦𝑓))
212192, 211syl5bi 232 . . . . . . . . . . . 12 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ 𝑓 ∈ (𝐺𝑘)) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑓))
213212impr 648 . . . . . . . . . . 11 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑓)
214191, 213sseldd 3637 . . . . . . . . . 10 ((((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) ∧ (𝑓 ∈ (𝐺𝑘) ∧ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅)) → 𝑦𝑁)
215214exp32 630 . . . . . . . . 9 (((𝜑𝑦𝑋) ∧ 𝑘 ∈ ω) → (𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
216215rexlimdva 3060 . . . . . . . 8 ((𝜑𝑦𝑋) → (∃𝑘 ∈ ω 𝑓 ∈ (𝐺𝑘) → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
217182, 216syl5bi 232 . . . . . . 7 ((𝜑𝑦𝑋) → (∃𝑧 ∈ ran 𝐺 𝑓𝑧 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
218179, 217syl5bi 232 . . . . . 6 ((𝜑𝑦𝑋) → (𝑓 ran 𝐺 → (((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁)))
219218rexlimdv 3059 . . . . 5 ((𝜑𝑦𝑋) → (∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅ → 𝑦𝑁))
2202193impia 1280 . . . 4 ((𝜑𝑦𝑋 ∧ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅) → 𝑦𝑁)
221220rabssdv 3715 . . 3 (𝜑 → {𝑦𝑋 ∣ ∃𝑓 ran 𝐺((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅} ⊆ 𝑁)
2221, 221syl5eqss 3682 . 2 (𝜑𝑆𝑁)
223 eleq2 2719 . . . 4 (𝑢 = 𝑆 → (𝑃𝑢𝑃𝑆))
224 sseq1 3659 . . . 4 (𝑢 = 𝑆 → (𝑢𝑁𝑆𝑁))
225223, 224anbi12d 747 . . 3 (𝑢 = 𝑆 → ((𝑃𝑢𝑢𝑁) ↔ (𝑃𝑆𝑆𝑁)))
226225rspcev 3340 . 2 ((𝑆𝐽 ∧ (𝑃𝑆𝑆𝑁)) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
227156, 178, 222, 226syl12anc 1364 1 (𝜑 → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552  cmpt 4762  ran crn 5144  cres 5145  suc csuc 5763   Fn wfn 5921  wf 5922  cfv 5926  ωcom 7107  reccrdg 7550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551
This theorem is referenced by:  neibastop2  32481
  Copyright terms: Public domain W3C validator