Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nltle2tri Structured version   Visualization version   GIF version

Theorem nltle2tri 41648
Description: Negated extended trichotomy law for 'less than' and 'less than or equal to'. (Contributed by AV, 18-Jul-2020.)
Assertion
Ref Expression
nltle2tri ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))

Proof of Theorem nltle2tri
StepHypRef Expression
1 xrltletr 12026 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
2 id 22 . . . . . . . . . 10 (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
32impcom 445 . . . . . . . . 9 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → 𝐴 < 𝐶)
4 xrltnle 10143 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
543adant2 1100 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 ↔ ¬ 𝐶𝐴))
65biimpd 219 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶 → ¬ 𝐶𝐴))
76imp 444 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → ¬ 𝐶𝐴)
87olcd 407 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
98expcom 450 . . . . . . . . 9 (𝐴 < 𝐶 → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
103, 9syl 17 . . . . . . . 8 (((𝐴 < 𝐵𝐵𝐶) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1110ex 449 . . . . . . 7 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1211com23 86 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))))
1312impd 446 . . . . 5 ((𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
14 id 22 . . . . . . 7 (¬ (𝐴 < 𝐵𝐵𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶))
1514orcd 406 . . . . . 6 (¬ (𝐴 < 𝐵𝐵𝐶) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
1615a1d 25 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶) → (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴)))
1713, 16pm2.61i 176 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
18 df-3an 1056 . . . . . 6 ((𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
1918notbii 309 . . . . 5 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ ¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴))
20 ianor 508 . . . . 5 (¬ ((𝐴 < 𝐵𝐵𝐶) ∧ 𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2119, 20bitri 264 . . . 4 (¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴) ↔ (¬ (𝐴 < 𝐵𝐵𝐶) ∨ ¬ 𝐶𝐴))
2217, 21sylibr 224 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
2322ex 449 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴)))
241, 23mpd 15 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ¬ (𝐴 < 𝐵𝐵𝐶𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054  wcel 2030   class class class wbr 4685  *cxr 10111   < clt 10112  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  icceuelpart  41697
  Copyright terms: Public domain W3C validator