Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nominpos Structured version   Visualization version   GIF version

Theorem nominpos 11481
 Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
Distinct variable group:   𝑥,𝑦

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 11470 . . . 4 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℝ)
2 2re 11302 . . . . . . 7 2 ∈ ℝ
3 2pos 11324 . . . . . . 7 0 < 2
4 divgt0 11103 . . . . . . 7 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝑥 / 2))
52, 3, 4mpanr12 723 . . . . . 6 ((𝑥 ∈ ℝ ∧ 0 < 𝑥) → 0 < (𝑥 / 2))
65ex 449 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → 0 < (𝑥 / 2)))
7 halfpos 11474 . . . . . 6 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
87biimpd 219 . . . . 5 (𝑥 ∈ ℝ → (0 < 𝑥 → (𝑥 / 2) < 𝑥))
96, 8jcad 556 . . . 4 (𝑥 ∈ ℝ → (0 < 𝑥 → (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
10 breq2 4808 . . . . . 6 (𝑦 = (𝑥 / 2) → (0 < 𝑦 ↔ 0 < (𝑥 / 2)))
11 breq1 4807 . . . . . 6 (𝑦 = (𝑥 / 2) → (𝑦 < 𝑥 ↔ (𝑥 / 2) < 𝑥))
1210, 11anbi12d 749 . . . . 5 (𝑦 = (𝑥 / 2) → ((0 < 𝑦𝑦 < 𝑥) ↔ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)))
1312rspcev 3449 . . . 4 (((𝑥 / 2) ∈ ℝ ∧ (0 < (𝑥 / 2) ∧ (𝑥 / 2) < 𝑥)) → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
141, 9, 13syl6an 569 . . 3 (𝑥 ∈ ℝ → (0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
15 iman 439 . . 3 ((0 < 𝑥 → ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)) ↔ ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1614, 15sylib 208 . 2 (𝑥 ∈ ℝ → ¬ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥)))
1716nrex 3138 1 ¬ ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ¬ ∃𝑦 ∈ ℝ (0 < 𝑦𝑦 < 𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051   class class class wbr 4804  (class class class)co 6814  ℝcr 10147  0cc0 10148   < clt 10286   / cdiv 10896  2c2 11282 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator