MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1bas Structured version   Visualization version   GIF version

Theorem om1bas 23635
Description: The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.)
Hypotheses
Ref Expression
om1bas.o 𝑂 = (𝐽 Ω1 𝑌)
om1bas.j (𝜑𝐽 ∈ (TopOn‘𝑋))
om1bas.y (𝜑𝑌𝑋)
om1bas.b (𝜑𝐵 = (Base‘𝑂))
Assertion
Ref Expression
om1bas (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
Distinct variable groups:   𝑓,𝐽   𝜑,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝐵(𝑓)   𝑂(𝑓)

Proof of Theorem om1bas
StepHypRef Expression
1 om1bas.b . . 3 (𝜑𝐵 = (Base‘𝑂))
2 om1bas.o . . . . 5 𝑂 = (𝐽 Ω1 𝑌)
3 eqidd 2822 . . . . 5 (𝜑 → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
4 eqidd 2822 . . . . 5 (𝜑 → (*𝑝𝐽) = (*𝑝𝐽))
5 eqidd 2822 . . . . 5 (𝜑 → (𝐽ko II) = (𝐽ko II))
6 om1bas.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 om1bas.y . . . . 5 (𝜑𝑌𝑋)
82, 3, 4, 5, 6, 7om1val 23634 . . . 4 (𝜑𝑂 = {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
98fveq2d 6674 . . 3 (𝜑 → (Base‘𝑂) = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
101, 9eqtrd 2856 . 2 (𝜑𝐵 = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
11 ovex 7189 . . . 4 (II Cn 𝐽) ∈ V
1211rabex 5235 . . 3 {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V
13 eqid 2821 . . . 4 {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩} = {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}
1413topgrpbas 16662 . . 3 ({𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ∈ V → {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩}))
1512, 14ax-mp 5 . 2 {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} = (Base‘{⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}⟩, ⟨(+g‘ndx), (*𝑝𝐽)⟩, ⟨(TopSet‘ndx), (𝐽ko II)⟩})
1610, 15syl6eqr 2874 1 (𝜑𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  {ctp 4571  cop 4573  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  ndxcnx 16480  Basecbs 16483  +gcplusg 16565  TopSetcts 16571  TopOnctopon 21518   Cn ccn 21832  ko cxko 22169  IIcii 23483  *𝑝cpco 23604   Ω1 comi 23605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-tset 16584  df-topon 21519  df-om1 23610
This theorem is referenced by:  om1elbas  23636  om1plusg  23638  om1tset  23639
  Copyright terms: Public domain W3C validator