Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumclN Structured version   Visualization version   GIF version

Theorem osumclN 34074
Description: Closure of orthogonal sum. If 𝑋 and 𝑌 are orthogonal closed projective subspaces, then their sum is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcl.p + = (+𝑃𝐾)
osumcl.o = (⊥𝑃𝐾)
osumcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
osumclN (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)

Proof of Theorem osumclN
StepHypRef Expression
1 simpl1 1056 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝐾 ∈ HL)
2 simpl2 1057 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋𝐶)
3 eqid 2609 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 osumcl.c . . . . 5 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 34048 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
61, 2, 5syl2anc 690 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑋 ⊆ (Atoms‘𝐾))
7 simpl3 1058 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌𝐶)
83, 4psubclssatN 34048 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
91, 7, 8syl2anc 690 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ (Atoms‘𝐾))
10 osumcl.p . . . 4 + = (+𝑃𝐾)
113, 10paddssat 33921 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
121, 6, 9, 11syl3anc 1317 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ⊆ (Atoms‘𝐾))
13 simpll1 1092 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝐾 ∈ HL)
14 oveq1 6534 . . . . . 6 (𝑋 = ∅ → (𝑋 + 𝑌) = (∅ + 𝑌))
153, 10padd02 33919 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (∅ + 𝑌) = 𝑌)
161, 9, 15syl2anc 690 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (∅ + 𝑌) = 𝑌)
1714, 16sylan9eqr 2665 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) = 𝑌)
18 simpll3 1094 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → 𝑌𝐶)
1917, 18eqeltrd 2687 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → (𝑋 + 𝑌) ∈ 𝐶)
20 osumcl.o . . . . 5 = (⊥𝑃𝐾)
2120, 4psubcli2N 34046 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 + 𝑌) ∈ 𝐶) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2213, 19, 21syl2anc 690 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 = ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2310, 20, 4osumcllem11N 34073 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ (𝑋 ⊆ ( 𝑌) ∧ 𝑋 ≠ ∅)) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2423anassrs 677 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → (𝑋 + 𝑌) = ( ‘( ‘(𝑋 + 𝑌))))
2524eqcomd 2615 . . 3 ((((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) ∧ 𝑋 ≠ ∅) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
2622, 25pm2.61dane 2868 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))
273, 20, 4ispsubclN 34044 . . 3 (𝐾 ∈ HL → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
281, 27syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → ((𝑋 + 𝑌) ∈ 𝐶 ↔ ((𝑋 + 𝑌) ⊆ (Atoms‘𝐾) ∧ ( ‘( ‘(𝑋 + 𝑌))) = (𝑋 + 𝑌))))
2912, 26, 28mpbir2and 958 1 (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋 ⊆ ( 𝑌)) → (𝑋 + 𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wss 3539  c0 3873  cfv 5790  (class class class)co 6527  Atomscatm 33371  HLchlt 33458  +𝑃cpadd 33902  𝑃cpolN 34009  PSubClcpscN 34041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-riotaBAD 33060
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7036  df-2nd 7037  df-undef 7263  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-p1 16809  df-lat 16815  df-clat 16877  df-oposet 33284  df-ol 33286  df-oml 33287  df-covers 33374  df-ats 33375  df-atl 33406  df-cvlat 33430  df-hlat 33459  df-psubsp 33610  df-pmap 33611  df-padd 33903  df-polarityN 34010  df-psubclN 34042
This theorem is referenced by:  pmapojoinN  34075  pexmidN  34076
  Copyright terms: Public domain W3C validator