Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspvs Structured version   Visualization version   GIF version

Theorem prjspvs 39337
Description: A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
prjspreln0.z 0 = (0g𝑆)
Assertion
Ref Expression
prjspvs ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙   𝑁,𝑙,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)   0 (𝑥,𝑦,𝑙)

Proof of Theorem prjspvs
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19871 . . . . . 6 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
213ad2ant1 1128 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LMod)
3 eldifi 4096 . . . . . 6 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁𝐾)
433ad2ant3 1130 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁𝐾)
5 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
6 difss 4101 . . . . . . . 8 ((Base‘𝑉) ∖ {(0g𝑉)}) ⊆ (Base‘𝑉)
75, 6eqsstri 3994 . . . . . . 7 𝐵 ⊆ (Base‘𝑉)
87sseli 3956 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
983ad2ant2 1129 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ∈ (Base‘𝑉))
10 eqid 2820 . . . . . 6 (Base‘𝑉) = (Base‘𝑉)
11 prjspertr.s . . . . . 6 𝑆 = (Scalar‘𝑉)
12 prjspertr.x . . . . . 6 · = ( ·𝑠𝑉)
13 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
1410, 11, 12, 13lmodvscl 19644 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑁𝐾𝑋 ∈ (Base‘𝑉)) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
152, 4, 9, 14syl3anc 1366 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ (Base‘𝑉))
16 eldifsni 4715 . . . . . . 7 (𝑁 ∈ (𝐾 ∖ { 0 }) → 𝑁0 )
17163ad2ant3 1130 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑁0 )
18 eldifsni 4715 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
1918, 5eleq2s 2930 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
20193ad2ant2 1129 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋 ≠ (0g𝑉))
21 prjspreln0.z . . . . . . 7 0 = (0g𝑆)
22 eqid 2820 . . . . . . 7 (0g𝑉) = (0g𝑉)
23 simp1 1131 . . . . . . 7 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑉 ∈ LVec)
2410, 12, 11, 13, 21, 22, 23, 4, 9lvecvsn0 19874 . . . . . 6 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ((𝑁 · 𝑋) ≠ (0g𝑉) ↔ (𝑁0𝑋 ≠ (0g𝑉))))
2517, 20, 24mpbir2and 711 . . . . 5 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ≠ (0g𝑉))
26 nelsn 4598 . . . . 5 ((𝑁 · 𝑋) ≠ (0g𝑉) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2725, 26syl 17 . . . 4 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ¬ (𝑁 · 𝑋) ∈ {(0g𝑉)})
2815, 27eldifd 3940 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ ((Base‘𝑉) ∖ {(0g𝑉)}))
2928, 5eleqtrrdi 2923 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∈ 𝐵)
30 simp2 1132 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → 𝑋𝐵)
31 oveq1 7156 . . . . . 6 (𝑁 = 𝑚 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
3231eqcoms 2828 . . . . 5 (𝑚 = 𝑁 → (𝑁 · 𝑋) = (𝑚 · 𝑋))
33 tbtru 1544 . . . . 5 ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3432, 33sylib 220 . . . 4 (𝑚 = 𝑁 → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
3534adantl 484 . . 3 (((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) ∧ 𝑚 = 𝑁) → ((𝑁 · 𝑋) = (𝑚 · 𝑋) ↔ ⊤))
36 trud 1546 . . 3 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ⊤)
374, 35, 36rspcedvd 3623 . 2 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋))
38 prjsprel.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
3938prjsprel 39331 . 2 ((𝑁 · 𝑋) 𝑋 ↔ (((𝑁 · 𝑋) ∈ 𝐵𝑋𝐵) ∧ ∃𝑚𝐾 (𝑁 · 𝑋) = (𝑚 · 𝑋)))
4029, 30, 37, 39syl21anbrc 1339 1 ((𝑉 ∈ LVec ∧ 𝑋𝐵𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wtru 1537  wcel 2113  wne 3015  wrex 3138  cdif 3926  {csn 4560   class class class wbr 5059  {copab 5121  cfv 6348  (class class class)co 7149  Basecbs 16476  Scalarcsca 16561   ·𝑠 cvsca 16562  0gc0g 16706  LModclmod 19627  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-tpos 7885  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-0g 16708  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-grp 18099  df-minusg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19366  df-dvdsr 19384  df-unit 19385  df-invr 19415  df-drng 19497  df-lmod 19629  df-lvec 19868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator