MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankonidlem Structured version   Visualization version   GIF version

Theorem rankonidlem 8638
Description: Lemma for rankonid 8639. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankonidlem (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))

Proof of Theorem rankonidlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 8576 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 478 . . . 4 Lim dom 𝑅1
3 limord 5745 . . . 4 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . 3 Ord dom 𝑅1
5 ordelon 5708 . . 3 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → 𝐴 ∈ On)
64, 5mpan 705 . 2 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
7 eleq1 2686 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ dom 𝑅1𝑦 ∈ dom 𝑅1))
8 eleq1 2686 . . . . 5 (𝑥 = 𝑦 → (𝑥 (𝑅1 “ On) ↔ 𝑦 (𝑅1 “ On)))
9 fveq2 6150 . . . . . 6 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
10 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
119, 10eqeq12d 2636 . . . . 5 (𝑥 = 𝑦 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝑦) = 𝑦))
128, 11anbi12d 746 . . . 4 (𝑥 = 𝑦 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
137, 12imbi12d 334 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦))))
14 eleq1 2686 . . . 4 (𝑥 = 𝐴 → (𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1))
15 eleq1 2686 . . . . 5 (𝑥 = 𝐴 → (𝑥 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On)))
16 fveq2 6150 . . . . . 6 (𝑥 = 𝐴 → (rank‘𝑥) = (rank‘𝐴))
17 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
1816, 17eqeq12d 2636 . . . . 5 (𝑥 = 𝐴 → ((rank‘𝑥) = 𝑥 ↔ (rank‘𝐴) = 𝐴))
1915, 18anbi12d 746 . . . 4 (𝑥 = 𝐴 → ((𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥) ↔ (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
2014, 19imbi12d 334 . . 3 (𝑥 = 𝐴 → ((𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) ↔ (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))))
21 ordtr1 5728 . . . . . . . . . 10 (Ord dom 𝑅1 → ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1))
224, 21ax-mp 5 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ dom 𝑅1) → 𝑦 ∈ dom 𝑅1)
2322ancoms 469 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → 𝑦 ∈ dom 𝑅1)
24 pm5.5 351 . . . . . . . 8 (𝑦 ∈ dom 𝑅1 → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2523, 24syl 17 . . . . . . 7 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
2625ralbidva 2979 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) ↔ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)))
27 simplr 791 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦𝑥)
28 ordelon 5708 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord dom 𝑅1𝑥 ∈ dom 𝑅1) → 𝑥 ∈ On)
294, 28mpan 705 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ dom 𝑅1𝑥 ∈ On)
3029ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
31 eloni 5694 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ On → Ord 𝑥)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → Ord 𝑥)
33 ordelsuc 6970 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑥 ∧ Ord 𝑥) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3427, 32, 33syl2anc 692 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑦𝑥 ↔ suc 𝑦𝑥))
3527, 34mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦𝑥)
3623adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ dom 𝑅1)
37 limsuc 6999 . . . . . . . . . . . . . . . . . . . 20 (Lim dom 𝑅1 → (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1))
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1)
3936, 38sylib 208 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc 𝑦 ∈ dom 𝑅1)
40 simpll 789 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ dom 𝑅1)
41 r1ord3g 8589 . . . . . . . . . . . . . . . . . 18 ((suc 𝑦 ∈ dom 𝑅1𝑥 ∈ dom 𝑅1) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4239, 40, 41syl2anc 692 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (suc 𝑦𝑥 → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥)))
4335, 42mpd 15 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑦) ⊆ (𝑅1𝑥))
44 rankidb 8610 . . . . . . . . . . . . . . . . . 18 (𝑦 (𝑅1 “ On) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
4544ad2antrl 763 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)))
46 suceq 5751 . . . . . . . . . . . . . . . . . . 19 ((rank‘𝑦) = 𝑦 → suc (rank‘𝑦) = suc 𝑦)
4746ad2antll 764 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → suc (rank‘𝑦) = suc 𝑦)
4847fveq2d 6154 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc (rank‘𝑦)) = (𝑅1‘suc 𝑦))
4945, 48eleqtrd 2700 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑦))
5043, 49sseldd 3585 . . . . . . . . . . . . . . 15 (((𝑥 ∈ dom 𝑅1𝑦𝑥) ∧ (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑦 ∈ (𝑅1𝑥))
5150ex 450 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝑅1𝑦𝑥) → ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → 𝑦 ∈ (𝑅1𝑥)))
5251ralimdva 2956 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥)))
5352imp 445 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
54 dfss3 3574 . . . . . . . . . . . 12 (𝑥 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝑅1𝑥))
5553, 54sylibr 224 . . . . . . . . . . 11 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ⊆ (𝑅1𝑥))
56 vex 3189 . . . . . . . . . . . 12 𝑥 ∈ V
5756elpw 4138 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (𝑅1𝑥) ↔ 𝑥 ⊆ (𝑅1𝑥))
5855, 57sylibr 224 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ 𝒫 (𝑅1𝑥))
59 r1sucg 8579 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6059adantr 481 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6158, 60eleqtrrd 2701 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ (𝑅1‘suc 𝑥))
62 r1elwf 8606 . . . . . . . . 9 (𝑥 ∈ (𝑅1‘suc 𝑥) → 𝑥 (𝑅1 “ On))
6361, 62syl 17 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 (𝑅1 “ On))
64 rankval3b 8636 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
6563, 64syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧})
66 eleq1 2686 . . . . . . . . . . . . . . . 16 ((rank‘𝑦) = 𝑦 → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6766adantl 482 . . . . . . . . . . . . . . 15 ((𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
6867ralimi 2947 . . . . . . . . . . . . . 14 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → ∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧))
69 ralbi 3061 . . . . . . . . . . . . . 14 (∀𝑦𝑥 ((rank‘𝑦) ∈ 𝑧𝑦𝑧) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
7068, 69syl 17 . . . . . . . . . . . . 13 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧 ↔ ∀𝑦𝑥 𝑦𝑧))
71 dfss3 3574 . . . . . . . . . . . . 13 (𝑥𝑧 ↔ ∀𝑦𝑥 𝑦𝑧)
7270, 71syl6bbr 278 . . . . . . . . . . . 12 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧𝑥𝑧))
7372rabbidv 3177 . . . . . . . . . . 11 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7473inteqd 4447 . . . . . . . . . 10 (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7574adantl 482 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ ∀𝑦𝑥 (rank‘𝑦) ∈ 𝑧} = {𝑧 ∈ On ∣ 𝑥𝑧})
7629adantr 481 . . . . . . . . . 10 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → 𝑥 ∈ On)
77 intmin 4464 . . . . . . . . . 10 (𝑥 ∈ On → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7876, 77syl 17 . . . . . . . . 9 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → {𝑧 ∈ On ∣ 𝑥𝑧} = 𝑥)
7965, 75, 783eqtrd 2659 . . . . . . . 8 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (rank‘𝑥) = 𝑥)
8063, 79jca 554 . . . . . . 7 ((𝑥 ∈ dom 𝑅1 ∧ ∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))
8180ex 450 . . . . . 6 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8226, 81sylbid 230 . . . . 5 (𝑥 ∈ dom 𝑅1 → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8382com12 32 . . . 4 (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)))
8483a1i 11 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝑦 ∈ dom 𝑅1 → (𝑦 (𝑅1 “ On) ∧ (rank‘𝑦) = 𝑦)) → (𝑥 ∈ dom 𝑅1 → (𝑥 (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥))))
8513, 20, 84tfis3 7007 . 2 (𝐴 ∈ On → (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)))
866, 85mpcom 38 1 (𝐴 ∈ dom 𝑅1 → (𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  wss 3556  𝒫 cpw 4132   cuni 4404   cint 4442  dom cdm 5076  cima 5079  Ord word 5683  Oncon0 5684  Lim wlim 5685  suc csuc 5686  Fun wfun 5843  cfv 5849  𝑅1cr1 8572  rankcrnk 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-r1 8574  df-rank 8575
This theorem is referenced by:  rankonid  8639  onwf  8640  onssr1  8641
  Copyright terms: Public domain W3C validator