MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resco Structured version   Visualization version   GIF version

Theorem resco 6103
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem resco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5882 . 2 Rel ((𝐴𝐵) ↾ 𝐶)
2 relco 6097 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 vex 3497 . . . . . 6 𝑥 ∈ V
4 vex 3497 . . . . . 6 𝑦 ∈ V
53, 4brco 5741 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
65anbi2i 624 . . . 4 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
7 19.42v 1954 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥𝐶 ∧ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)))
8 vex 3497 . . . . . . . 8 𝑧 ∈ V
98brresi 5862 . . . . . . 7 (𝑥(𝐵𝐶)𝑧 ↔ (𝑥𝐶𝑥𝐵𝑧))
109anbi1i 625 . . . . . 6 ((𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦) ↔ ((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦))
11 anass 471 . . . . . 6 (((𝑥𝐶𝑥𝐵𝑧) ∧ 𝑧𝐴𝑦) ↔ (𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)))
1210, 11bitr2i 278 . . . . 5 ((𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ (𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1312exbii 1848 . . . 4 (∃𝑧(𝑥𝐶 ∧ (𝑥𝐵𝑧𝑧𝐴𝑦)) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
146, 7, 133bitr2i 301 . . 3 ((𝑥𝐶𝑥(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
154brresi 5862 . . 3 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦 ↔ (𝑥𝐶𝑥(𝐴𝐵)𝑦))
163, 4brco 5741 . . 3 (𝑥(𝐴 ∘ (𝐵𝐶))𝑦 ↔ ∃𝑧(𝑥(𝐵𝐶)𝑧𝑧𝐴𝑦))
1714, 15, 163bitr4i 305 . 2 (𝑥((𝐴𝐵) ↾ 𝐶)𝑦𝑥(𝐴 ∘ (𝐵𝐶))𝑦)
181, 2, 17eqbrriv 5664 1 ((𝐴𝐵) ↾ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wex 1780  wcel 2114   class class class wbr 5066  cres 5557  ccom 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-co 5564  df-res 5567
This theorem is referenced by:  cocnvcnv2  6111  coires1  6117  dftpos2  7909  canthp1lem2  10075  o1res  14917  gsumzaddlem  19041  tsmsf1o  22753  tsmsmhm  22754  mbfres  24245  hhssims  29051  symgcom  30727  cycpmconjslem1  30796  cycpmconjslem2  30797  erdsze2lem2  32451  cvmlift2lem9a  32550  mbfresfi  34953  cocnv  35015  xrnres  35665  xrnres2  35666  xrnres3  35667  diophrw  39376  eldioph2  39379  mbfres2cn  42263  funcoressn  43297
  Copyright terms: Public domain W3C validator