Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvlem Structured version   Visualization version   GIF version

Theorem resvlem 29640
Description: Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvlem.r 𝑅 = (𝑊v 𝐴)
resvlem.e 𝐶 = (𝐸𝑊)
resvlem.f 𝐸 = Slot 𝑁
resvlem.n 𝑁 ∈ ℕ
resvlem.b 𝑁 ≠ 5
Assertion
Ref Expression
resvlem (𝐴𝑉𝐶 = (𝐸𝑅))

Proof of Theorem resvlem
StepHypRef Expression
1 resvlem.r . . . . . . 7 𝑅 = (𝑊v 𝐴)
2 eqid 2621 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2621 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
41, 2, 3resvid2 29637 . . . . . 6 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = 𝑊)
54fveq2d 6157 . . . . 5 (((Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
653expib 1265 . . . 4 ((Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
71, 2, 3resvval2 29638 . . . . . . 7 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
87fveq2d 6157 . . . . . 6 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩)))
9 resvlem.f . . . . . . . 8 𝐸 = Slot 𝑁
10 resvlem.n . . . . . . . 8 𝑁 ∈ ℕ
119, 10ndxid 15816 . . . . . . 7 𝐸 = Slot (𝐸‘ndx)
129, 10ndxarg 15815 . . . . . . . . 9 (𝐸‘ndx) = 𝑁
13 resvlem.b . . . . . . . . 9 𝑁 ≠ 5
1412, 13eqnetri 2860 . . . . . . . 8 (𝐸‘ndx) ≠ 5
15 scandx 15945 . . . . . . . 8 (Scalar‘ndx) = 5
1614, 15neeqtrri 2863 . . . . . . 7 (𝐸‘ndx) ≠ (Scalar‘ndx)
1711, 16setsnid 15847 . . . . . 6 (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑊) ↾s 𝐴)⟩))
188, 17syl6eqr 2673 . . . . 5 ((¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
19183expib 1265 . . . 4 (¬ (Base‘(Scalar‘𝑊)) ⊆ 𝐴 → ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊)))
206, 19pm2.61i 176 . . 3 ((𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
21 reldmresv 29635 . . . . . . . . 9 Rel dom ↾v
2221ovprc1 6644 . . . . . . . 8 𝑊 ∈ V → (𝑊v 𝐴) = ∅)
231, 22syl5eq 2667 . . . . . . 7 𝑊 ∈ V → 𝑅 = ∅)
2423fveq2d 6157 . . . . . 6 𝑊 ∈ V → (𝐸𝑅) = (𝐸‘∅))
259str0 15843 . . . . . 6 ∅ = (𝐸‘∅)
2624, 25syl6eqr 2673 . . . . 5 𝑊 ∈ V → (𝐸𝑅) = ∅)
27 fvprc 6147 . . . . 5 𝑊 ∈ V → (𝐸𝑊) = ∅)
2826, 27eqtr4d 2658 . . . 4 𝑊 ∈ V → (𝐸𝑅) = (𝐸𝑊))
2928adantr 481 . . 3 ((¬ 𝑊 ∈ V ∧ 𝐴𝑉) → (𝐸𝑅) = (𝐸𝑊))
3020, 29pm2.61ian 830 . 2 (𝐴𝑉 → (𝐸𝑅) = (𝐸𝑊))
31 resvlem.e . 2 𝐶 = (𝐸𝑊)
3230, 31syl6reqr 2674 1 (𝐴𝑉𝐶 = (𝐸𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  Vcvv 3189  wss 3559  c0 3896  cop 4159  cfv 5852  (class class class)co 6610  cn 10972  5c5 11025  ndxcnx 15789   sSet csts 15790  Slot cslot 15791  Basecbs 15792  s cress 15793  Scalarcsca 15876  v cresv 29633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-i2m1 9956  ax-1ne0 9957  ax-rrecex 9960  ax-cnre 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-ndx 15795  df-slot 15796  df-sets 15798  df-sca 15889  df-resv 29634
This theorem is referenced by:  resvbas  29641  resvplusg  29642  resvvsca  29643  resvmulr  29644
  Copyright terms: Public domain W3C validator