![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgr0edg | Structured version Visualization version GIF version |
Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgr0edg | ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1082 | . . 3 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ 𝑉) | |
2 | nnnn0 11337 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | 2 | 3ad2ant3 1104 | . . 3 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0) |
4 | rusgrnumwwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | rusgrnumwwlk.l | . . . 4 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
6 | 4, 5 | rusgrnumwwlklem 26937 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | 1, 3, 6 | syl2anc 694 | . 2 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
8 | rusgrusgr 26516 | . . . . . . . . . 10 ⊢ (𝐺RegUSGraph0 → 𝐺 ∈ USGraph) | |
9 | usgr0edg0rusgr 26527 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ USGraph → (𝐺RegUSGraph0 ↔ (Edg‘𝐺) = ∅)) | |
10 | 9 | biimpcd 239 | . . . . . . . . . 10 ⊢ (𝐺RegUSGraph0 → (𝐺 ∈ USGraph → (Edg‘𝐺) = ∅)) |
11 | 8, 10 | mpd 15 | . . . . . . . . 9 ⊢ (𝐺RegUSGraph0 → (Edg‘𝐺) = ∅) |
12 | 0enwwlksnge1 26818 | . . . . . . . . 9 ⊢ (((Edg‘𝐺) = ∅ ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) | |
13 | 11, 12 | sylan 487 | . . . . . . . 8 ⊢ ((𝐺RegUSGraph0 ∧ 𝑁 ∈ ℕ) → (𝑁 WWalksN 𝐺) = ∅) |
14 | eleq2 2719 | . . . . . . . . 9 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) ↔ 𝑤 ∈ ∅)) | |
15 | noel 3952 | . . . . . . . . . 10 ⊢ ¬ 𝑤 ∈ ∅ | |
16 | 15 | pm2.21i 116 | . . . . . . . . 9 ⊢ (𝑤 ∈ ∅ → ¬ (𝑤‘0) = 𝑃) |
17 | 14, 16 | syl6bi 243 | . . . . . . . 8 ⊢ ((𝑁 WWalksN 𝐺) = ∅ → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
18 | 13, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐺RegUSGraph0 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
19 | 18 | 3adant2 1100 | . . . . . 6 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝑤‘0) = 𝑃)) |
20 | 19 | ralrimiv 2994 | . . . . 5 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) |
21 | rabeq0 3990 | . . . . 5 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ (𝑤‘0) = 𝑃) | |
22 | 20, 21 | sylibr 224 | . . . 4 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = ∅) |
23 | 22 | fveq2d 6233 | . . 3 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (#‘∅)) |
24 | hash0 13196 | . . 3 ⊢ (#‘∅) = 0 | |
25 | 23, 24 | syl6eq 2701 | . 2 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 0) |
26 | 7, 25 | eqtrd 2685 | 1 ⊢ ((𝐺RegUSGraph0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑃𝐿𝑁) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ∅c0 3948 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 0cc0 9974 ℕcn 11058 ℕ0cn0 11330 #chash 13157 Vtxcvtx 25919 Edgcedg 25984 USGraphcusgr 26089 RegUSGraphcrusgr 26508 WWalksN cwwlksn 26774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-xadd 11985 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-edg 25985 df-uhgr 25998 df-upgr 26022 df-uspgr 26090 df-usgr 26091 df-vtxdg 26418 df-rgr 26509 df-rusgr 26510 df-wwlks 26778 df-wwlksn 26779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |