MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3tpop Structured version   Visualization version   GIF version

Theorem s3tpop 14271
Description: A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
s3tpop ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})

Proof of Theorem s3tpop
StepHypRef Expression
1 df-s3 14211 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2 s2cl 14240 . . . 4 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
3 cats1un 14083 . . . 4 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
42, 3stoic3 1777 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
5 s2prop 14269 . . . . 5 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
653adant3 1128 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
7 s2len 14251 . . . . . . 7 (♯‘⟨“𝐴𝐵”⟩) = 2
87opeq1i 4806 . . . . . 6 ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶
98sneqi 4578 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} = {⟨2, 𝐶⟩}
109a1i 11 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} = {⟨2, 𝐶⟩})
116, 10uneq12d 4140 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}))
12 df-tp 4572 . . . . 5 {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩})
1312eqcomi 2830 . . . 4 ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
1413a1i 11 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
154, 11, 143eqtrd 2860 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
161, 15syl5eq 2868 1 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cun 3934  {csn 4567  {cpr 4569  {ctp 4571  cop 4573  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  2c2 11693  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  ⟨“cs2 14203  ⟨“cs3 14204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211
This theorem is referenced by:  funcnvs3  14276  wrdlen3s3  14311
  Copyright terms: Public domain W3C validator