MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s4prop Structured version   Visualization version   GIF version

Theorem s4prop 14272
Description: A length 4 word is a union of two unordered pairs of ordered pairs. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
s4prop (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))

Proof of Theorem s4prop
StepHypRef Expression
1 df-s4 14212 . 2 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
2 simpl 485 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐴𝑆)
32adantr 483 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐴𝑆)
4 simpr 487 . . . . . . 7 ((𝐴𝑆𝐵𝑆) → 𝐵𝑆)
54adantr 483 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐵𝑆)
6 simpl 485 . . . . . . 7 ((𝐶𝑆𝐷𝑆) → 𝐶𝑆)
76adantl 484 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐶𝑆)
83, 5, 7s3cld 14234 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆)
9 simpr 487 . . . . . 6 ((𝐶𝑆𝐷𝑆) → 𝐷𝑆)
109adantl 484 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → 𝐷𝑆)
11 cats1un 14083 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑆𝐷𝑆) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
128, 10, 11syl2anc 586 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
13 df-s3 14211 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
14 s2cl 14240 . . . . . . . . 9 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
1514adantr 483 . . . . . . . 8 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
16 cats1un 14083 . . . . . . . 8 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1715, 7, 16syl2anc 586 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
1813, 17syl5eq 2868 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
19 s2prop 14269 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2019adantr 483 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
2120uneq1d 4138 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2218, 21eqtrd 2856 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
2322uneq1d 4138 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2412, 23eqtrd 2856 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
25 unass 4142 . . . 4 (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}))
2625a1i 11 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})))
27 df-pr 4570 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})
28 s2len 14251 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
2928a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵”⟩) = 2)
3029opeq1d 4809 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶⟩)
31 s3len 14256 . . . . . . . 8 (♯‘⟨“𝐴𝐵𝐶”⟩) = 3
3231a1i 11 . . . . . . 7 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (♯‘⟨“𝐴𝐵𝐶”⟩) = 3)
3332opeq1d 4809 . . . . . 6 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩ = ⟨3, 𝐷⟩)
3430, 33preq12d 4677 . . . . 5 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩, ⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩} = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3527, 34syl5eqr 2870 . . . 4 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩}) = {⟨2, 𝐶⟩, ⟨3, 𝐷⟩})
3635uneq2d 4139 . . 3 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ ({⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} ∪ {⟨(♯‘⟨“𝐴𝐵𝐶”⟩), 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
3724, 26, 363eqtrd 2860 . 2 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
381, 37syl5eq 2868 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → ⟨“𝐴𝐵𝐶𝐷”⟩ = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩, ⟨3, 𝐷⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cun 3934  {csn 4567  {cpr 4569  cop 4573  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  2c2 11693  3c3 11694  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  ⟨“cs2 14203  ⟨“cs3 14204  ⟨“cs4 14205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-s4 14212
This theorem is referenced by:  funcnvs4  14277  s4f1o  14280  s4dom  14281
  Copyright terms: Public domain W3C validator