MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrun Structured version   Visualization version   GIF version

Theorem supxrun 12097
Description: The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrun ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))

Proof of Theorem supxrun
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3770 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ↔ (𝐴𝐵) ⊆ ℝ*)
21biimpi 206 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐴𝐵) ⊆ ℝ*)
323adant3 1079 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝐴𝐵) ⊆ ℝ*)
4 supxrcl 12096 . . 3 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
543ad2ant2 1081 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
6 elun 3736 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
7 xrltso 11926 . . . . . . . . 9 < Or ℝ*
87a1i 11 . . . . . . . 8 (𝐴 ⊆ ℝ* → < Or ℝ*)
9 xrsupss 12090 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐴 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐴 𝑧 < 𝑤)))
108, 9supub 8317 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
11103ad2ant1 1080 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐴, ℝ*, < ) < 𝑥))
12 supxrcl 12096 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
1312ad2antrr 761 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
144ad2antlr 762 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
15 ssel2 3582 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
1615adantlr 750 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ*)
17 xrlelttr 11939 . . . . . . . . . . . 12 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*𝑥 ∈ ℝ*) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1813, 14, 16, 17syl3anc 1323 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) → ((sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ∧ sup(𝐵, ℝ*, < ) < 𝑥) → sup(𝐴, ℝ*, < ) < 𝑥))
1918expdimp 453 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (sup(𝐵, ℝ*, < ) < 𝑥 → sup(𝐴, ℝ*, < ) < 𝑥))
2019con3d 148 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ 𝑥𝐴) ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2120exp41 637 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (𝑥𝐴 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
2221com34 91 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝐵 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))))
23223imp 1254 . . . . . 6 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → (¬ sup(𝐴, ℝ*, < ) < 𝑥 → ¬ sup(𝐵, ℝ*, < ) < 𝑥)))
2411, 23mpdd 43 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐴 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
257a1i 11 . . . . . . 7 (𝐵 ⊆ ℝ* → < Or ℝ*)
26 xrsupss 12090 . . . . . . 7 (𝐵 ⊆ ℝ* → ∃𝑦 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑦 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑦 → ∃𝑤𝐵 𝑧 < 𝑤)))
2725, 26supub 8317 . . . . . 6 (𝐵 ⊆ ℝ* → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
28273ad2ant2 1081 . . . . 5 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥𝐵 → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
2924, 28jaod 395 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ((𝑥𝐴𝑥𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
306, 29syl5bi 232 . . 3 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → (𝑥 ∈ (𝐴𝐵) → ¬ sup(𝐵, ℝ*, < ) < 𝑥))
3130ralrimiv 2960 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥)
32 rexr 10037 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
33 xrsupss 12090 . . . . . . . 8 (𝐵 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑧𝐵 ¬ 𝑥 < 𝑧 ∧ ∀𝑧 ∈ ℝ* (𝑧 < 𝑥 → ∃𝑦𝐵 𝑧 < 𝑦)))
3425, 33suplub 8318 . . . . . . 7 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ*𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
3532, 34sylani 685 . . . . . 6 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦𝐵 𝑥 < 𝑦))
36 elun2 3764 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3736anim1i 591 . . . . . . 7 ((𝑦𝐵𝑥 < 𝑦) → (𝑦 ∈ (𝐴𝐵) ∧ 𝑥 < 𝑦))
3837reximi2 3005 . . . . . 6 (∃𝑦𝐵 𝑥 < 𝑦 → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)
3935, 38syl6 35 . . . . 5 (𝐵 ⊆ ℝ* → ((𝑥 ∈ ℝ ∧ 𝑥 < sup(𝐵, ℝ*, < )) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
4039expd 452 . . . 4 (𝐵 ⊆ ℝ* → (𝑥 ∈ ℝ → (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦)))
4140ralrimiv 2960 . . 3 (𝐵 ⊆ ℝ* → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
42413ad2ant2 1081 . 2 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))
43 supxr 12094 . 2 ((((𝐴𝐵) ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) ∧ (∀𝑥 ∈ (𝐴𝐵) ¬ sup(𝐵, ℝ*, < ) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < sup(𝐵, ℝ*, < ) → ∃𝑦 ∈ (𝐴𝐵)𝑥 < 𝑦))) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
443, 5, 31, 42, 43syl22anc 1324 1 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cun 3557  wss 3559   class class class wbr 4618   Or wor 4999  supcsup 8298  cr 9887  *cxr 10025   < clt 10026  cle 10027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221
This theorem is referenced by:  supxrmnf  12098  xpsdsval  22109
  Copyright terms: Public domain W3C validator