MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgfixf1 Structured version   Visualization version   GIF version

Theorem symgfixf1 18565
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a 1-1 function. (Contributed by AV, 4-Jan-2019.)
Hypotheses
Ref Expression
symgfixf.p 𝑃 = (Base‘(SymGrp‘𝑁))
symgfixf.q 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
symgfixf.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgfixf.h 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
Assertion
Ref Expression
symgfixf1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑁,𝑞   𝑄,𝑞   𝑆,𝑞
Allowed substitution hint:   𝐻(𝑞)

Proof of Theorem symgfixf1
Dummy variables 𝑔 𝑝 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgfixf.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
2 symgfixf.q . . 3 𝑄 = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
3 symgfixf.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
4 symgfixf.h . . 3 𝐻 = (𝑞𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾})))
51, 2, 3, 4symgfixf 18564 . 2 (𝐾𝑁𝐻:𝑄𝑆)
64fvtresfn 6770 . . . . . 6 (𝑔𝑄 → (𝐻𝑔) = (𝑔 ↾ (𝑁 ∖ {𝐾})))
74fvtresfn 6770 . . . . . 6 (𝑝𝑄 → (𝐻𝑝) = (𝑝 ↾ (𝑁 ∖ {𝐾})))
86, 7eqeqan12d 2838 . . . . 5 ((𝑔𝑄𝑝𝑄) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
98adantl 484 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) ↔ (𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾}))))
101, 2symgfixelq 18561 . . . . . . 7 (𝑔 ∈ V → (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾)))
1110elv 3499 . . . . . 6 (𝑔𝑄 ↔ (𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾))
121, 2symgfixelq 18561 . . . . . . 7 (𝑝 ∈ V → (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
1312elv 3499 . . . . . 6 (𝑝𝑄 ↔ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))
1411, 13anbi12i 628 . . . . 5 ((𝑔𝑄𝑝𝑄) ↔ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)))
15 f1ofn 6616 . . . . . . . . . . 11 (𝑔:𝑁1-1-onto𝑁𝑔 Fn 𝑁)
1615adantr 483 . . . . . . . . . 10 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔 Fn 𝑁)
17 f1ofn 6616 . . . . . . . . . . 11 (𝑝:𝑁1-1-onto𝑁𝑝 Fn 𝑁)
1817adantr 483 . . . . . . . . . 10 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝 Fn 𝑁)
1916, 18anim12i 614 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔 Fn 𝑁𝑝 Fn 𝑁))
20 difss 4108 . . . . . . . . 9 (𝑁 ∖ {𝐾}) ⊆ 𝑁
2119, 20jctir 523 . . . . . . . 8 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
2221adantl 484 . . . . . . 7 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁))
23 fvreseq 6810 . . . . . . 7 (((𝑔 Fn 𝑁𝑝 Fn 𝑁) ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
2422, 23syl 17 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) ↔ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
25 f1of 6615 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁𝑔:𝑁𝑁)
2625adantr 483 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → 𝑔:𝑁𝑁)
27 f1of 6615 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁𝑝:𝑁𝑁)
2827adantr 483 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → 𝑝:𝑁𝑁)
29 fdm 6522 . . . . . . . . . . . 12 (𝑔:𝑁𝑁 → dom 𝑔 = 𝑁)
30 fdm 6522 . . . . . . . . . . . 12 (𝑝:𝑁𝑁 → dom 𝑝 = 𝑁)
3129, 30anim12i 614 . . . . . . . . . . 11 ((𝑔:𝑁𝑁𝑝:𝑁𝑁) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
3226, 28, 31syl2an 597 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁))
33 eqtr3 2843 . . . . . . . . . 10 ((dom 𝑔 = 𝑁 ∧ dom 𝑝 = 𝑁) → dom 𝑔 = dom 𝑝)
3432, 33syl 17 . . . . . . . . 9 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = dom 𝑝)
3534ad2antlr 725 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = dom 𝑝)
36 simpr 487 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖))
37 eqtr3 2843 . . . . . . . . . . . 12 (((𝑔𝐾) = 𝐾 ∧ (𝑝𝐾) = 𝐾) → (𝑔𝐾) = (𝑝𝐾))
3837ad2ant2l 744 . . . . . . . . . . 11 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (𝑔𝐾) = (𝑝𝐾))
3938ad2antlr 725 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔𝐾) = (𝑝𝐾))
40 fveq2 6670 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑔𝑖) = (𝑔𝐾))
41 fveq2 6670 . . . . . . . . . . . . . 14 (𝑖 = 𝐾 → (𝑝𝑖) = (𝑝𝐾))
4240, 41eqeq12d 2837 . . . . . . . . . . . . 13 (𝑖 = 𝐾 → ((𝑔𝑖) = (𝑝𝑖) ↔ (𝑔𝐾) = (𝑝𝐾)))
4342ralunsn 4824 . . . . . . . . . . . 12 (𝐾𝑁 → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4443adantr 483 . . . . . . . . . . 11 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4544adantr 483 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖) ↔ (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) ∧ (𝑔𝐾) = (𝑝𝐾))))
4636, 39, 45mpbir2and 711 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖))
47 f1odm 6619 . . . . . . . . . . . . . 14 (𝑔:𝑁1-1-onto𝑁 → dom 𝑔 = 𝑁)
4847adantr 483 . . . . . . . . . . . . 13 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → dom 𝑔 = 𝑁)
4948adantr 483 . . . . . . . . . . . 12 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → dom 𝑔 = 𝑁)
50 difsnid 4743 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
5150eqcomd 2827 . . . . . . . . . . . 12 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5249, 51sylan9eqr 2878 . . . . . . . . . . 11 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5352adantr 483 . . . . . . . . . 10 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → dom 𝑔 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
5453raleqdv 3415 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖) ↔ ∀𝑖 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})(𝑔𝑖) = (𝑝𝑖)))
5546, 54mpbird 259 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))
56 f1ofun 6617 . . . . . . . . . . . 12 (𝑔:𝑁1-1-onto𝑁 → Fun 𝑔)
5756adantr 483 . . . . . . . . . . 11 ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) → Fun 𝑔)
58 f1ofun 6617 . . . . . . . . . . . 12 (𝑝:𝑁1-1-onto𝑁 → Fun 𝑝)
5958adantr 483 . . . . . . . . . . 11 ((𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾) → Fun 𝑝)
6057, 59anim12i 614 . . . . . . . . . 10 (((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾)) → (Fun 𝑔 ∧ Fun 𝑝))
6160ad2antlr 725 . . . . . . . . 9 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (Fun 𝑔 ∧ Fun 𝑝))
62 eqfunfv 6807 . . . . . . . . 9 ((Fun 𝑔 ∧ Fun 𝑝) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6361, 62syl 17 . . . . . . . 8 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → (𝑔 = 𝑝 ↔ (dom 𝑔 = dom 𝑝 ∧ ∀𝑖 ∈ dom 𝑔(𝑔𝑖) = (𝑝𝑖))))
6435, 55, 63mpbir2and 711 . . . . . . 7 (((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) ∧ ∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖)) → 𝑔 = 𝑝)
6564ex 415 . . . . . 6 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → (∀𝑖 ∈ (𝑁 ∖ {𝐾})(𝑔𝑖) = (𝑝𝑖) → 𝑔 = 𝑝))
6624, 65sylbid 242 . . . . 5 ((𝐾𝑁 ∧ ((𝑔:𝑁1-1-onto𝑁 ∧ (𝑔𝐾) = 𝐾) ∧ (𝑝:𝑁1-1-onto𝑁 ∧ (𝑝𝐾) = 𝐾))) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
6714, 66sylan2b 595 . . . 4 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝑔 ↾ (𝑁 ∖ {𝐾})) = (𝑝 ↾ (𝑁 ∖ {𝐾})) → 𝑔 = 𝑝))
689, 67sylbid 242 . . 3 ((𝐾𝑁 ∧ (𝑔𝑄𝑝𝑄)) → ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
6968ralrimivva 3191 . 2 (𝐾𝑁 → ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝))
70 dff13 7013 . 2 (𝐻:𝑄1-1𝑆 ↔ (𝐻:𝑄𝑆 ∧ ∀𝑔𝑄𝑝𝑄 ((𝐻𝑔) = (𝐻𝑝) → 𝑔 = 𝑝)))
715, 69, 70sylanbrc 585 1 (𝐾𝑁𝐻:𝑄1-1𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  wss 3936  {csn 4567  cmpt 5146  dom cdm 5555  cres 5557  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  Basecbs 16483  SymGrpcsymg 18495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-efmnd 18034  df-symg 18496
This theorem is referenced by:  symgfixf1o  18568
  Copyright terms: Public domain W3C validator