MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   GIF version

Theorem tfrlem13 7531
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem13 ¬ recs(𝐹) ∈ V
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 7525 . . 3 Ord dom recs(𝐹)
3 ordirr 5779 . . 3 (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹))
42, 3ax-mp 5 . 2 ¬ dom recs(𝐹) ∈ dom recs(𝐹)
5 eqid 2651 . . . . 5 (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
61, 5tfrlem12 7530 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴)
7 elssuni 4499 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ 𝐴)
81recsfval 7522 . . . . 5 recs(𝐹) = 𝐴
97, 8syl6sseqr 3685 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹))
10 dmss 5355 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
116, 9, 103syl 18 . . 3 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
122a1i 11 . . . . . 6 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
13 dmexg 7139 . . . . . 6 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
14 elon2 5772 . . . . . 6 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
1512, 13, 14sylanbrc 699 . . . . 5 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
16 sucidg 5841 . . . . 5 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
1715, 16syl 17 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹))
181, 5tfrlem10 7528 . . . . 5 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
19 fndm 6028 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2015, 18, 193syl 18 . . . 4 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2117, 20eleqtrrd 2733 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
2211, 21sseldd 3637 . 2 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹))
234, 22mto 188 1 ¬ recs(𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  Vcvv 3231  cun 3605  wss 3607  {csn 4210  cop 4216   cuni 4468  dom cdm 5143  cres 5145  Ord word 5760  Oncon0 5761  suc csuc 5763   Fn wfn 5921  cfv 5926  recscrecs 7512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-wrecs 7452  df-recs 7513
This theorem is referenced by:  tfrlem14  7532  tfrlem15  7533  tfrlem16  7534  tfr2b  7537
  Copyright terms: Public domain W3C validator