MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Visualization version   GIF version

Theorem tfrlem13 7248
Description: Lemma for transfinite recursion. If recs is a set function, then 𝐶 is acceptable, and thus a subset of recs, but dom 𝐶 is bigger than dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem13 ¬ recs(𝐹) ∈ V
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 7242 . . 3 Ord dom recs(𝐹)
3 ordirr 5548 . . 3 (Ord dom recs(𝐹) → ¬ dom recs(𝐹) ∈ dom recs(𝐹))
42, 3ax-mp 5 . 2 ¬ dom recs(𝐹) ∈ dom recs(𝐹)
5 eqid 2514 . . . . 5 (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩})
61, 5tfrlem12 7247 . . . 4 (recs(𝐹) ∈ V → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴)
7 elssuni 4301 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ 𝐴)
81recsfval 7239 . . . . 5 recs(𝐹) = 𝐴
97, 8syl6sseqr 3519 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ∈ 𝐴 → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹))
10 dmss 5136 . . . 4 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
116, 9, 103syl 18 . . 3 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) ⊆ dom recs(𝐹))
122a1i 11 . . . . . 6 (recs(𝐹) ∈ V → Ord dom recs(𝐹))
13 dmexg 6864 . . . . . 6 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ V)
14 elon2 5541 . . . . . 6 (dom recs(𝐹) ∈ On ↔ (Ord dom recs(𝐹) ∧ dom recs(𝐹) ∈ V))
1512, 13, 14sylanbrc 694 . . . . 5 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ On)
16 sucidg 5608 . . . . 5 (dom recs(𝐹) ∈ On → dom recs(𝐹) ∈ suc dom recs(𝐹))
1715, 16syl 17 . . . 4 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ suc dom recs(𝐹))
181, 5tfrlem10 7245 . . . . 5 (dom recs(𝐹) ∈ On → (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹))
19 fndm 5789 . . . . 5 ((recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) Fn suc dom recs(𝐹) → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2015, 18, 193syl 18 . . . 4 (recs(𝐹) ∈ V → dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}) = suc dom recs(𝐹))
2117, 20eleqtrrd 2595 . . 3 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom (recs(𝐹) ∪ {⟨dom recs(𝐹), (𝐹‘recs(𝐹))⟩}))
2211, 21sseldd 3473 . 2 (recs(𝐹) ∈ V → dom recs(𝐹) ∈ dom recs(𝐹))
234, 22mto 186 1 ¬ recs(𝐹) ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1938  {cab 2500  wral 2800  wrex 2801  Vcvv 3077  cun 3442  wss 3444  {csn 4028  cop 4034   cuni 4270  dom cdm 4932  cres 4934  Ord word 5529  Oncon0 5530  suc csuc 5532   Fn wfn 5684  cfv 5689  recscrecs 7229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6722
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-fv 5697  df-wrecs 7168  df-recs 7230
This theorem is referenced by:  tfrlem14  7249  tfrlem15  7250  tfrlem16  7251  tfr2b  7254
  Copyright terms: Public domain W3C validator