MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem15 Structured version   Visualization version   GIF version

Theorem tfrlem15 8030
Description: Lemma for transfinite recursion. Without assuming ax-rep 5192, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem15 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐵   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem15
StepHypRef Expression
1 tfrlem.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem9a 8024 . . 3 (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V)
32adantl 484 . 2 ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V)
41tfrlem13 8028 . . . 4 ¬ recs(𝐹) ∈ V
5 simpr 487 . . . . 5 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V)
6 resss 5880 . . . . . . . 8 (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)
76a1i 11 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹))
81tfrlem6 8020 . . . . . . . . 9 Rel recs(𝐹)
9 resdm 5899 . . . . . . . . 9 (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹))
108, 9ax-mp 5 . . . . . . . 8 (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)
11 ssres2 5883 . . . . . . . 8 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵))
1210, 11eqsstrrid 4018 . . . . . . 7 (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵))
137, 12eqssd 3986 . . . . . 6 (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹))
1413eleq1d 2899 . . . . 5 (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V))
155, 14syl5ibcom 247 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V))
164, 15mtoi 201 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵)
171tfrlem8 8022 . . . 4 Ord dom recs(𝐹)
18 eloni 6203 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
1918adantr 483 . . . 4 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵)
20 ordtri1 6226 . . . . 5 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹)))
2120con2bid 357 . . . 4 ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2217, 19, 21sylancr 589 . . 3 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵))
2316, 22mpbird 259 . 2 ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹))
243, 23impbida 799 1 (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  Vcvv 3496  wss 3938  dom cdm 5557  cres 5559  Rel wrel 5562  Ord word 6192  Oncon0 6193   Fn wfn 6352  cfv 6357  recscrecs 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  tfrlem16  8031  tfr2b  8034
  Copyright terms: Public domain W3C validator