MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcn Structured version   Visualization version   GIF version

Theorem tgcn 20996
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
tgcn.3 (𝜑𝐾 = (topGen‘𝐵))
tgcn.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
tgcn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem tgcn
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 tgcn.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 iscn 20979 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
41, 2, 3syl2anc 692 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5 tgcn.3 . . . . . . . . 9 (𝜑𝐾 = (topGen‘𝐵))
6 topontop 20658 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
72, 6syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
85, 7eqeltrrd 2699 . . . . . . . 8 (𝜑 → (topGen‘𝐵) ∈ Top)
9 tgclb 20714 . . . . . . . 8 (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top)
108, 9sylibr 224 . . . . . . 7 (𝜑𝐵 ∈ TopBases)
11 bastg 20710 . . . . . . 7 (𝐵 ∈ TopBases → 𝐵 ⊆ (topGen‘𝐵))
1210, 11syl 17 . . . . . 6 (𝜑𝐵 ⊆ (topGen‘𝐵))
1312, 5sseqtr4d 3627 . . . . 5 (𝜑𝐵𝐾)
14 ssralv 3651 . . . . 5 (𝐵𝐾 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
1513, 14syl 17 . . . 4 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
165eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑥𝐾𝑥 ∈ (topGen‘𝐵)))
17 eltg3 20706 . . . . . . . . . 10 (𝐵 ∈ TopBases → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1810, 17syl 17 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
1916, 18bitrd 268 . . . . . . . 8 (𝜑 → (𝑥𝐾 ↔ ∃𝑧(𝑧𝐵𝑥 = 𝑧)))
20 ssralv 3651 . . . . . . . . . . . 12 (𝑧𝐵 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
21 topontop 20658 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
221, 21syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
23 iunopn 20643 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ ∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽) → 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)
2423ex 450 . . . . . . . . . . . . 13 (𝐽 ∈ Top → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2522, 24syl 17 . . . . . . . . . . . 12 (𝜑 → (∀𝑦𝑧 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
2620, 25sylan9r 689 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
27 imaeq2 5431 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹 𝑧))
28 imauni 6469 . . . . . . . . . . . . . 14 (𝐹 𝑧) = 𝑦𝑧 (𝐹𝑦)
2927, 28syl6eq 2671 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝐹𝑥) = 𝑦𝑧 (𝐹𝑦))
3029eleq1d 2683 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽))
3130imbi2d 330 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽) ↔ (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 𝑦𝑧 (𝐹𝑦) ∈ 𝐽)))
3226, 31syl5ibrcom 237 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝑥 = 𝑧 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3332expimpd 628 . . . . . . . . 9 (𝜑 → ((𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3433exlimdv 1858 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧𝐵𝑥 = 𝑧) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3519, 34sylbid 230 . . . . . . 7 (𝜑 → (𝑥𝐾 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽)))
3635imp 445 . . . . . 6 ((𝜑𝑥𝐾) → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → (𝐹𝑥) ∈ 𝐽))
3736ralrimdva 2965 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽))
38 imaeq2 5431 . . . . . . 7 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
3938eleq1d 2683 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ 𝐽 ↔ (𝐹𝑦) ∈ 𝐽))
4039cbvralv 3163 . . . . 5 (∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽 ↔ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
4137, 40syl6ib 241 . . . 4 (𝜑 → (∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽 → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
4215, 41impbid 202 . . 3 (𝜑 → (∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽 ↔ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽))
4342anbi2d 739 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
444, 43bitrd 268 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐵 (𝐹𝑦) ∈ 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2908  wss 3560   cuni 4409   ciun 4492  ccnv 5083  cima 5087  wf 5853  cfv 5857  (class class class)co 6615  topGenctg 16038  Topctop 20638  TopOnctopon 20655  TopBasesctb 20689   Cn ccn 20968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-map 7819  df-topgen 16044  df-top 20639  df-topon 20656  df-bases 20690  df-cn 20971
This theorem is referenced by:  subbascn  20998  txcnmpt  21367  ismtyhmeolem  33274
  Copyright terms: Public domain W3C validator