Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2tp Structured version   Visualization version   GIF version

Theorem tpr2tp 29112
Description: The usual topology on (ℝ × ℝ) is the product topology of the usual topology on . (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypothesis
Ref Expression
tpr2tp.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
tpr2tp (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))

Proof of Theorem tpr2tp
StepHypRef Expression
1 tpr2tp.0 . . 3 𝐽 = (topGen‘ran (,))
2 retopon 22325 . . 3 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2683 . 2 𝐽 ∈ (TopOn‘ℝ)
4 txtopon 21152 . 2 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
53, 3, 4mp2an 703 1 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1976   × cxp 5026  ran crn 5029  cfv 5790  (class class class)co 6527  cr 9792  (,)cioo 12005  topGenctg 15870  TopOnctopon 20466   ×t ctx 21121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-pre-lttri 9867  ax-pre-lttrn 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-1st 7037  df-2nd 7038  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-ioo 12009  df-topgen 15876  df-top 20469  df-bases 20470  df-topon 20471  df-tx 21123
This theorem is referenced by:  tpr2uni  29113  sxbrsigalem4  29510  sxbrsiga  29513
  Copyright terms: Public domain W3C validator