MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrnbcnvfv Structured version   Visualization version   GIF version

Theorem usgrnbcnvfv 27147
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 27-Oct-2020.)
Hypothesis
Ref Expression
usgrnbcnvfv.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrnbcnvfv ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})

Proof of Theorem usgrnbcnvfv
StepHypRef Expression
1 usgrnbcnvfv.i . . 3 𝐼 = (iEdg‘𝐺)
21usgrf1o 26956 . 2 (𝐺 ∈ USGraph → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
3 prcom 4668 . . 3 {𝑁, 𝐾} = {𝐾, 𝑁}
4 eqid 2821 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
54nbusgreledg 27135 . . . . 5 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ (Edg‘𝐺)))
6 edgval 26834 . . . . . . . 8 (Edg‘𝐺) = ran (iEdg‘𝐺)
71eqcomi 2830 . . . . . . . . 9 (iEdg‘𝐺) = 𝐼
87rneqi 5807 . . . . . . . 8 ran (iEdg‘𝐺) = ran 𝐼
96, 8eqtri 2844 . . . . . . 7 (Edg‘𝐺) = ran 𝐼
109a1i 11 . . . . . 6 (𝐺 ∈ USGraph → (Edg‘𝐺) = ran 𝐼)
1110eleq2d 2898 . . . . 5 (𝐺 ∈ USGraph → ({𝑁, 𝐾} ∈ (Edg‘𝐺) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
125, 11bitrd 281 . . . 4 (𝐺 ∈ USGraph → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ {𝑁, 𝐾} ∈ ran 𝐼))
1312biimpa 479 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝑁, 𝐾} ∈ ran 𝐼)
143, 13eqeltrrid 2918 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → {𝐾, 𝑁} ∈ ran 𝐼)
15 f1ocnvfv2 7034 . 2 ((𝐼:dom 𝐼1-1-onto→ran 𝐼 ∧ {𝐾, 𝑁} ∈ ran 𝐼) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
162, 14, 15syl2an2r 683 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ (𝐺 NeighbVtx 𝐾)) → (𝐼‘(𝐼‘{𝐾, 𝑁})) = {𝐾, 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cpr 4569  ccnv 5554  dom cdm 5555  ran crn 5556  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  iEdgciedg 26782  Edgcedg 26832  USGraphcusgr 26934   NeighbVtx cnbgr 27114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-edg 26833  df-upgr 26867  df-umgr 26868  df-usgr 26936  df-nbgr 27115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator